Refine Your Search

Topic

Author

Search Results

Technical Paper

Use of Active Vibration Control to Improve Vehicle Refinement while Expanding the Usable Range of Cylinder Deactivation

2019-06-05
2019-01-1571
Cylinder deactivation has been in use for several years resulting in a sizable fuel economy advantage for V8-powered vehicles. The size of the fuel-economy benefit, compared to the full potential possible, is often limited due to the amount of usable torque available in four-cylinder-mode being capped by Noise, Vibration, and Harshness (NVH) sensitivities of various rear-wheel-drive vehicle architectures. This paper describes the application and optimization of active vibration absorbers as a system to attenuate vibration through several paths from the powertrain-driveline into the car body. The use of this strategy for attenuating vibration at strategic points is shown to diminish the need for reducing the powertrain source amplitude. This paper describes the process by which the strategic application of these devices is developed in order to achieve the increased usage of the most fuel efficient reduced-cylinder-count engine-operating-points.
Technical Paper

New Method for Decoupling the Powertrain Roll Mode to Improve Idle Vibration

2019-06-05
2019-01-1588
Modern engines have high torque outputs and have low RPM due to increased demand for fuel efficiency. Vibrations caused by such engines have to be mitigated. Decoupling the roll mode from the remaining five rigid body modes results in a response which is predominantly about the torque roll axis (TRA) and helps reduce vibrations. Therefore, placing the mounts on the TRA early in the design phase is crucial. Best NVH performance can be obtained by optimizing the powertrain mount parameters viz; Position, Orientation and Stiffness. Many times, packaging restricts the mounts to be placed about the TRA resulting in degradation in NVH performance. Assuming that the line through the engine mount (Body side) centers is the desired TRA, we propose a novel method of shifting the TRA by adding mass modifying the powertrain inertia such that the new TRA is parallel to and on top to the desired TRA. This in turn will decouple the roll mode and reduce vibrations.
Technical Paper

Notch Plasticity and Fatigue Modelling of AZ31B-H24 Magnesium Alloy Sheet

2019-04-02
2019-01-0530
Vehicle weight reduction through the use of components made of magnesium alloys is an effective way to reduce carbon dioxide emission and improve fuel economy. In the design of these components, which are mostly under cyclic loading, notches are inevitably present. In this study, surface strain distribution and crack initiation sites in the notch region of AZ31B-H24 magnesium alloy notched specimens under uniaxial load are measured via digital image correlation. Predicted strains from finite element analysis using Abaqus and LS-DYNA material types 124 and 233 are then compared against the experimental measurements during quasi-static and cyclic loading. It is concluded that MAT_233, when calibrated using cyclic tensile and compressive stress-strain curves, is capable of predicting strain at the notch root. Finally, employing Smith-Watson-Topper model together with MAT_233 results, fatigue lives of the notched specimens are estimated and compared with experimental results.
Technical Paper

Efficiency Evaluation of Lower Viscosity ATF in a Planetary Automatic Transmission for Improved Fuel Economy

2019-04-02
2019-01-1296
With continued industry focus on reducing parasitic transmission and driveline losses, detailed studies are required to quantify potential enablers to improve vehicle fuel economy. Investigations were undertaken to understand the influence of lower viscosity Automatic Transmission Fluids (ATF) on transmission efficiency as compared with conventional fluids. The objectives of this study were to quantify the losses of lower viscosity ATF as compared with conventional ATF, and to understand the influence of ATF properties including viscosities, base oil types, and additive packages on fuel efficiency. The transmission efficiency investigations were conducted on a test bench following a vehicle-based break-in of the transmission using a prescribed drive cycle on a chassis dynamometer. At low temperature, the lower viscosity ATF showed a clear advantage over the conventional ATF in both spin loss and loaded efficiency evaluations.
Technical Paper

Evaluation of Low Mileage GPF Filtration and Regeneration as Influenced by Soot Morphology, Reactivity, and GPF Loading

2019-04-02
2019-01-0975
As European and Chinese tailpipe emission regulations for gasoline light-duty vehicles impose particulate number limits, automotive manufacturers have begun equipping some vehicles with a gasoline particulate filter (GPF). Increased understanding of how soot morphology, reactivity, and GPF loading affect GPF filtration and regeneration characteristics is necessary for advancing GPF performance. This study investigates the impacts of morphology, reactivity, and filter soot loading on GPF filtration and regeneration. Soot morphology and reactivity are varied through changes in fuel injection parameters, known to affect soot formation conditions. Changes in morphology and reactivity are confirmed through analysis using a transmission electron microscope (TEM) and a thermogravimetric analyzer (TGA) respectively.
Technical Paper

A Comprehensive Approach for Estimation of Automotive Component Life due to Thermal Effects

2018-05-30
2018-37-0019
Due to stringent environmental requirements, the vehicle under-hood and underbody temperatures have been steadily increasing. The increased temperatures affect components life and therefore, more thermal protection measures may be necessary. In this paper, we present an algorithm for estimation of automotive component life due to thermal effects through the vehicle life. Traditional approaches consider only the maximum temperature that a component will experience during severe driving maneuvers. However, that approach does not consider the time duration or frequency of exposure to temperature. We have envisioned a more realistic and science based approach to estimate component life based on vehicle duty cycles, component temperature profile, frequency and characteristics of material thermal degradation. In the proposed algorithm, a transient thermal analysis model provides the exhaust gas and exhaust surface temperatures for all exhaust system segments, and for any driving scenario.
Technical Paper

Test of Inclined Double Beads on Aluminum Sheets

2018-04-03
2018-01-1221
Draw beads are widely used in the binder of a draw die for regulating the restraining force and control the draw-in of a metal blank. Different sheet materials and local panel geometry request different local draw bead configurations. Even the majority of draw bead is single draw bead, the alternative double draw bead does have its advantages, such as less bending damage may be brought to the sheet material and more bead geometry features available to work on. In this paper, to measure the pulling force when a piece of sheet metal passing through a draw bead on an inclined binder, the AA5XXX and AA6XXX materials were tested and its strain were measured with a digital image correlation (DIC) system. Five different types of double bead configurations were tested. The beads are installed in a Stretch-Bend-Draw-System (SBDS) test device. The clearance between a male and a female bead is 10% thicker than the sheet material. A tensile machine was used to record the pulling force.
Technical Paper

Lumped Parameter Based Thermo-Physical Modeling of Electrified Vehicle Transmission System

2018-04-03
2018-01-1195
More stringent Federal emission regulations and fuel economy requirements have driven the automotive industry toward more efficient vehicle thermal management systems to best utilize the heat produced from burning fuel and improve driveline efficiency. The greatest part of the effort is directed toward the hybridization of automotive transmission systems. The efficiency and durability of hybrid powertrain depends on the heat generation in electric motors and their interactions among each other, ambient condition, the cooling system and the transmission component configuration. These increase the complexity of motor temperature prediction as well as the computational cost of running a conjugate heat-transfer based CFD analysis. In this paper, 1D physics based thermal model is developed which allows rapid and accurate component-wise temperature estimation of the electric motor during both steady-state and transient driving cycles.
Technical Paper

Automatic Calibrations Generation for Powertrain Controllers Using MapleSim

2018-04-03
2018-01-1458
Modern powertrains are highly complex systems whose development requires careful tuning of hundreds of parameters, called calibrations. These calibrations determine essential vehicle attributes such as performance, dynamics, fuel consumption, emissions, noise, vibrations, harshness, etc. This paper presents a methodology for automatic generation of calibrations for a powertrain-abstraction software module within the powertrain software of hybrid electric vehicles. This module hides the underlying powertrain architecture from the remaining powertrain software. The module encodes the powertrain’s torque-speed equations as calibrations. The methodology commences with modeling the powertrain in MapleSim, a multi-domain modeling and simulation tool. Then, the underlying mathematical representation of the modeled powertrain is generated from the MapleSim model using Maple, MapleSim’s symbolic engine.
Technical Paper

Field Fatigue Failure Prediction Using Multiple Regression with Random Variables

2018-04-03
2018-01-1106
The most common used warranty prediction method at component level (non-repairable system) is called Weibull analysis. In Weibull analysis, failure time is assumed to follow a certain distribution such as Weibull, and time is the only predictor in the model for predicting percentage of failures. However, other variables such as design variables, manufacturing parameters, and field use condition also affect warranty. These variables should be considered in the prediction. In this paper, a multiple regression approach is proposed to predict warranty failures of a solenoid switch by considering multiple factors that affect the warranty. A single failure mode caused by fatigue is studied. The failure is caused by out of GD&T (Geometric Dimension and Tolerance) specs. These GD&T variables together with component operation time are used as predictors in the model. The final model is established by integrating physics of failures with statistical analysis results.
Technical Paper

eFlite Dedicated Hybrid Transmission for Chrysler Pacifica

2018-04-03
2018-01-0396
Electrified powertrains will play a growing role in meeting global fuel consumption and CO2 requirements. In support of this, FCA US has developed its first dedicated hybrid transmission (the eFlite® transmission), used in the Chrysler Pacifica Hybrid. The Chrysler Pacifica is the industry’s first electrified minivan. [2] The new eFlite hybrid transmission architecture optimizes performance, fuel economy, mass, packaging and NVH. The transmission is an electrically variable FWD transaxle with an input split configuration and incorporates two electric motors, both capable of driving in EV mode. The lubrication and cooling system makes use of two pumps, one electrically operated and one mechanically driven. The Chrysler Pacifica has a 16kWh lithium ion battery and a 3.6-liter Pentastar® engine which offers total system power of 260 hp with 84 MPGe, 33 miles of all electric range and 566 miles total driving range. [2] This paper’s focus is on the eFlite transmission.
Technical Paper

Simplified Approach for Optimizing Lightening Holes in Truck Frames for Durability Performance

2017-03-28
2017-01-1345
During development of new vehicles, CAE driven optimizations are helpful in achieving the optimal designs. In the early phase of vehicle development there is an opportunity to explore shape changes, gage reduction or alternative materials as enablers to reduce weight. However, in later phases of vehicle development the window of opportunity closes on most of the enablers discussed above. The paper discusses a simplified methodology for reducing the weight in design cycle for truck frames using parametric Design of Experiments (DOE). In body-on-frame vehicles, reducing the weight of the frame in the design cycle without down gaging involves introducing lightening holes or cutouts while still maintaining the fatigue life. It is also known that the lightening holes might cause stress risers and be detrimental to the fatigue life of the component. Thus the ability to identify cutout locations while maintaining the durability performance becomes very critical.
Technical Paper

A New Weight Reduction Lightening Holes Development Approach Based on Frame Durability Fatigue Performance

2017-03-28
2017-01-1348
For a light duty truck, the frame is a structural system and it must go through a series of proving ground events to meet fatigue performance requirement. Nowadays, in order to meet stringent CAFE standards, auto manufacturers are seeking to keep the vehicle weight as light as possible. The weight reduction on the frame is a challenging task as it still needs to maintain the strength, safety, and durability fatigue performance. CAE fatigue simulation is widely used in frame design before the physical proving ground tests are performed. A typical frame durability fatigue analysis includes both the base metal fatigue analysis and seam weld fatigue analysis. Usually the gauges of the frame components are dictated by the seam weld fatigue performance so opportunities for weight reduction may exist in areas away from the welds. One method to reduce frame weight is to cut lightening holes in the areas that have little impact on the frame fatigue performance.
Technical Paper

Simultaneous Durability Assessment and Relative Random Analysis Under Base Shake Loading Conditions

2017-03-28
2017-01-0339
For many automotive systems it is required to calculate both the durability performance of the part and to rule out the possibility of collision of individual components during severe base shake vibration conditions. Advanced frequency domain methods now exist to enable the durability assessment to be undertaken fully in the frequency domain and utilizing the most advanced and efficient analysis tools (refs 1, 2, 3, 4, 5). In recent years new capabilities have been developed which allow hyper-sized models with multiple correlated loadcases to be processed. The most advanced stress processing (eg, complex von-Mises) and fatigue algorithms (eg, Strain-Life) are now included. Furthermore, the previously required assumptions that the loading be stationary, Gaussian and random have been somewhat relaxed. For example, mixed loading like sine on random can now be applied.
Technical Paper

Failure Modeling of Adhesive Bonded Joints with Cohesive Elements

2017-03-28
2017-01-0351
Advanced high strength steels (AHSS) have been extensively used in the automotive industry for vehicle weight reduction. Although AHSS show better parent metal fatigue performance, the influence of material strength on spot weld fatigue is insignificant. To overcome this drawback, structural adhesive can been used along with spot weld to form weld-bond joints. These joints significantly improve spot weld fatigue performance and provide high joint stiffness enabling down-gauge of AHSS structures. However, modeling the adhesive joints using finite element methods is a challenge due to the nonlinear behavior of the material. In this study, the formulation of cohesive element based on the traction-separation constitutive law was applied to predict the initiation and propagation of the failure mode in the adhesively bonded joints for lap shear and coach peel specimens subjected to quasi-static loadings. The predicted load versus displacement relations correlated well with the test results.
Technical Paper

Optimal Parameter Calibration for Physics Based Multi-Mass Engine Model

2017-03-28
2017-01-0214
Designing an efficient transient thermal system model has become a very important task in improving fuel economy. As opposed to steady-state thermal models, part of the difficulty in designing a transient model is optimizing a set of input parameters. The first objective in this work is to develop an engine compatible physics-based 1D thermal model for fuel economy and robust control. In order to capture and study the intrinsic thermo-physical nature, both generic “Three Mass” and “Eight Mass” engine models are developed. The models have been correlated heuristically using Simulink. This correlation and calibration process is challenging and time consuming, especially in the case of the 8-mass model. Hence, in this work a Particle Swarm Optimizer (PSO) method has been introduced and implemented on a simple 3-mass and more complex 8-mass engine thermal model in order to optimize the input parameters.
Journal Article

Considerations of Vibration Fatigue for Automotive Components

2017-03-28
2017-01-0380
As an automobile is driven, its components and structures consistently experience the random excitations from road inputs and periodic vibration from engine firing. This could cause durability issues if the component structure isn’t fully validated. Vibration fatigue is a field of study regarding the assessment and improvement of a component’s or system’s robustness to vibration inputs. This paper introduces aspects of vibration fatigue to help designers, release engineers, and test engineers better understand the requirements, testing methodologies available, and strategies for improving vibration fatigue performance for the design and validation testing of their products. Vibration characteristics such as typical vibration levels and frequency content for varied areas in the automotive environment are introduced. Methodologies available for conducting actual vibration testing are introduced with listed advantages and disadvantages.
Journal Article

Evaluation of Prog-Die Wear Properties on Bare DP1180 Steel

2017-03-28
2017-01-0310
The die wear up to 80,800 hits on a prog-die setup for bare DP1180 steel was investigated in real production condition. In total, 31 die inserts with the combination of 11 die materials and 9 coatings were evaluated. The analytical results of die service life for each insert were provided by examining the evolution of surface wear on inserts and formed parts. The moments of appearance of die defects, propagation of die defects, and catastrophic failure were determined. Moreover, the surface roughness of the formed parts for each die insert was characterized using Wyko NT110 machine. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for flange operations on bare DP 1180 steel and update OEM tooling standards based on the experimental results. The current study provides the guidance for the die material and coating selections in large volume production for next generation AHSSs.
Journal Article

Optical Engine Operation to Attain Piston Temperatures Representative of Metal Engine Conditions

2017-03-28
2017-01-0619
Piston temperature plays a major role in determining details of fuel spray vaporization, fuel film deposition and the resulting combustion in direct-injection engines. Due to different heat transfer properties that occur in optical and all-metal engines, it becomes an inevitable requirement to verify the piston temperatures in both engine configurations before carrying out optical engine studies. A novel Spot Infrared-based Temperature (SIR-T) technique was developed to measure the piston window temperature in an optical engine. Chromium spots of 200 nm thickness were vacuum-arc deposited at different locations on a sapphire window. An infrared (IR) camera was used to record the intensity of radiation emitted by the deposited spots. From a set of calibration experiments, a relation was established between the IR camera measurements of these spots and the surface temperature measured by a thermocouple.
Journal Article

Model-Based Wheel Torque and Backlash Estimation for Drivability Control

2017-03-28
2017-01-1111
To improve torque management algorithms for drivability, the powertrain controller must be able to compensate for the nonlinear dynamics of the driveline. In particular, the presence of backlash in the transmission and drive shafts excites sharp torque fluctuations during tip-in or tip-out transients, leading to a deterioration of the vehicle drivability and NVH. This paper proposes a model-based estimator that predicts the wheel torque in an automotive drivetrain, accounting for the effects of backlash and drive shaft flexibility. The starting point of this work is a control-oriented model of the transmission and vehicle drivetrain dynamics that predicts the wheel torque during tip-in and tip-out transients at fixed gear. The estimator is based upon a switching structure that combines a Kalman Filter and an open-loop prediction based on the developed model.
X