Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimum Shifting of Hybrid and Battery Electric Powertrain Systems with Motors before and after a Transmission

2024-04-09
2024-01-2143
This paper proposes an optimization-based transmission gear shifting strategy for electrified powertrains with a transmission. With the demand for reduced vehicle emissions, electrified propulsion systems have garnered significant attention due to their potential to improve vehicle efficiency and performance. An electrified propulsion system architecture of significance includes multiple electric motors and a transmission where some driveline actuators can transmit torque through changing gear ratios. If there is at least one electric motor arranged before the input of the transmission and at least one after the transmission output, a unique design opportunity arises to shift gears in the most energy efficient manner.
Technical Paper

Proactive Battery Energy Management Using Navigation Information

2024-04-09
2024-01-2142
In this paper, a control strategy for state of charge (SOC) allocation using navigation data for Hybrid Electric Vehicle (HEV) propulsion systems is proposed. This algorithm dynamically defines and adjusts a SOC target as a function of distance travelled on-line, thereby enabling proactive management of the energy store in the battery. The proposed approach incorporates variances in road resistance and adheres to geolocation constraints, including ultra-low emission zones (uLEZ). The anticipated advantages are particularly pronounced during scenarios involving extensive medium-to-long journeys characterized by abrupt topological changes or the necessity for exclusive electric vehicle (EV) mode operation. This novel solution stands to significantly enhance both drivability and fuel economy outcomes.
Technical Paper

A Linear Quadratic Integral Approach to the Profiling of Engine Speed for Synchronization

2024-04-09
2024-01-2139
During driving conditions, when it is needed to transition from Electric Vehicle (EV) to Hybrid Vehicle operation, synchronization of the engine with the shaft and transmission is essential to enable clutch engagement and, subsequently, providing engine power to the wheels. Challenges arise when the engine must generate power to move itself and cannot rely on electric motors for precision. Cost-effective hybrid vehicle propulsion architectures which utilize small 12V belt-starter generators (BSGs) to initiate engine activation are inherently affected. In these situations, a speed profile that balance rapid response and control effort while considering system limitations to mitigate undesirable overshoots and delays, is required. This paper presents a Linear Quadratic Integral (LQI) approach to formulate a speed reference profile that ensures optimal engine behavior.
Journal Article

Acoustical Modeling and Test Correlation of an Intake Manifold and Charge Air Cooler Assembly for a 4-Cylinder Turbocharged Engine

2023-05-08
2023-01-1076
The charge air cooler (CAC), which is placed between the compressor and the engine intake manifold (IM), is an important component in a turbocharged engine. It is essential to capture the temperature change, the pressure drop or the acoustical wave behavior of the charge air cooler in the one-dimensional(1D) simulation model for the predictive accuracy of engine performance and intake noise. In this paper, the emphasis is on the acoustic modeling of an intake manifold and charge air cooler assembly for the low frequency engine intake order noise. In this assembly, the core of the charge air cooler is embedded in the plenum of the intake manifold. The modeling and correlation process is comprised of three steps. First, the charge air cooler core is removed from the intake manifold and put into a rectangular box matching its envelope with a single air inlet and outlet, thereby simplifying the complex shape of the manifold with the different runner components.
Technical Paper

Three-Dimensional Thermal Simulation of a Hybrid Vehicle with Energy Consumption Estimation and Prediction of Battery Degradation under Modern Drive-Cycles

2023-04-11
2023-01-0135
As more electric vehicles (BEV, HEV, PHEV, etc.) are adopted in the upcoming decades, it is becoming increasingly important to conduct vehicle-level thermal simulations under different drive-cycle conditions while incorporating the various subsystem thermal losses. Thermal management of the various heat sources in the vehicle is essential both in terms of ensuring passenger safety as well as maintaining all the subsystems within their corresponding safe temperature limits. It is also imperative that these thermal simulations include energy consumption prediction, while considering the effect of battery degradation both in terms of increased thermal losses as well as reduction in the vehicle’s range. For this purpose, a three-dimensional transient thermal analysis framework was coupled with an electrochemical P2D-based battery model and a vehicle dynamics model to test different scenarios and their effect on a hybrid vehicle’s range and the lithium-ion battery life.
Journal Article

Model-Based Thermal Control Strategy for Electrified Vehicles

2022-03-29
2022-01-0203
Stringent requirements for high fuel economy and energy efficiency mandate using increasingly complex vehicle thermal systems in most types of electrified vehicles (xEVs). Enabling the maximum benefits of such complex thermal systems under the full envelope of their operating modes demands designing complex thermal control systems. This is becoming one of the most challenging problems for electrified vehicles. Typically, the thermal systems of such vehicles have several modes of operation, constituting nonlinear multiple-input/multiple-output (MIMO) dynamic systems that cannot be efficiently controlled using classical or rule based strategies. This paper covers the different steps towards the design of a model-based control (MBC) strategy that can improve the overall performance of xEV thermal control systems. To achieve the above objective, the latter MBC strategy is applied to control cooling of the cabin and high voltage battery.
Technical Paper

Impact of CO2 Dilution on Ignition Delay Times of Full Blend Gasolines in a Rapid Compression Machine

2021-09-21
2021-01-1199
Autoignition delay times of two full blend gasoline fuels (high and low RON) were explored in a rapid compression machine. CO2 dilution by mass was introduced at 0%, 15%, and 30% levels with the O2:N2 mole ratio fixed at 1:3.76. This dilution strategy is used to represent exhaust gas recirculation (EGR) substitution in spark ignition (SI) engines by using CO2 as a surrogate for major EGR constituents(N2, CO2, H2O). Experiments were conducted over the temperature range of 650K-900K and at 10 bar and 20 bar compressed pressure conditions for equivalence ratios of (Φ =) 0.6-1.3. The full blend fuels were admitted directly into the combustion chamber for mixture preparation using the direct test chamber (DTC) approach. CO2 addition retarded the autoignition times for the fuels studied here. The retarding effect of the CO2 dilution was more pronounced in the NTC region when compared to the lower and higher temperature range.
Technical Paper

Root-Cause Analysis, and Improvement of a Port Fuel Injected V6 Vehicle to Achieve Best-In-Class Sound Quality

2021-08-31
2021-01-1041
This paper will communicate an in-depth investigation uncovering contributing factors defining the desired and undesired acoustic signature of a V6 Vehicle. A transfer path analysis tool is exercised to rank improvement opportunities. These results are used to drive design improvements with the goal of achieving best-in-class sound quality when executed as a system. A cohesive powertrain-vehicle-level acoustic improvement package is executed, improving air induction, intake manifold, both structure and air-core, exhaust-radiated and under-hood-acoustic encapsulation. The acoustic package was validated by jury testing to provide significant refinement enhancement improving predicted 3rd party scores.
Technical Paper

FCA US LLC-Magnesium Closures Development

2021-04-06
2021-01-0278
This paper will focus on automotive development highlights of FCA US LLC magnesium intensive closures components. Deploying lightweight materials is one of many key strategies that has been implemented to reduce vehicle mass and improve overall fuel economy while maintaining rigorous functional objective performance. This paper will outline some basic design and manufacturing considerations for magnesium closures. The development of the 2017 Chrysler Pacifica liftgate and 2018 Jeep® Wrangler swing gate along with the two generations of magnesium spare tire brackets will be the focus.
Technical Paper

Optimum Engine Power Point Determination Method to Maximize Fuel Economy in Hybrid Vehicles

2021-04-06
2021-01-0419
One of the advantages of hybrid vehicles is the ability to operate the engine more optimally at a low brake specific fuel consumption (BSFC) as compared to conventional vehicles. This ability of hybrid vehicles is a major factor contributing to the fuel economy improvement over conventional vehicles. Unlike conventional gasoline powertrains, hybrid powertrains allow engine to be switched off and use battery power to propel vehicles. In order to maintain battery state of charge neutral operation between the start and end of a drive cycle, the net electrical energy consumption from the battery requires to be zero. An optimization algorithm can be developed and calibrated in different ways to achieve net zero battery energy over the cycle. For instance, the engine can be operated at powers higher than the power of the drive cycle to charge the battery. This accumulated energy can be used for all-electric propulsion by turning off the engine.
Technical Paper

Transient Thermal Modeling of an Automotive Rear-Axle

2021-04-06
2021-01-0569
In response to demands for higher fuel economy and stringent emission regulations, OEMs always strive hard to improve component/system efficiency and minimize losses. In the driveline system, improving the efficiency of an automotive rear-axle is critical because it is one of the major power-loss contributor. Optimum oil-fill inside an axle is one of the feasible solutions to minimize spin losses, while ensuring lubrication performance and heat-dissipation requirements. Thus, prior to conducting vehicle development tests, several dyno-level tests are conducted to study the thermal behavior of axle-oil (optimum level) under severe operating conditions. These test conditions represent the axle operation in hot weather conditions, steep grade, maximum tow capacity, etc. It is important to ensure that oil does not exceed its thermal limits (disintegration of oil leading to degradation).
Technical Paper

A Qualitative Comparison of the Macroscopic Spray Characteristics of Gasoline Mixtures and their Multi-Component Surrogates Using a Rapid Compression Machine

2021-04-06
2021-01-0558
Rapid Compression Machines (RCM) offer the ability to easily change the compression ratio and the pressure/mixture composition/temperature to gather ignition delay data at various engine relevant conditions. Therefore, RCMs with optical access to the combustion chamber can provide an effective way to analyze macroscopic spray characteristics needed to understand the spray injection process and for spray model development, validation and calibration at conditions that are suitable for engines. Fuel surrogates can help control fuel parameters, develop models for spray and combustion, and perform laser diagnostics with known fluorescence characteristics. This study quantifies and evaluates the macroscopic spray characteristics of multicomponent gasoline surrogates in comparison to their gasoline counterparts, under gasoline direct injection (GDI) engine conditions.
Technical Paper

A Rapid Compression Machine Study on Ignition Delay Times of Gasoline Mixtures and their Multicomponent Surrogate Fuels under Diluted and Undiluted Conditions

2021-04-06
2021-01-0554
In this work autoignition delay times of two multi-component surrogates (high and low RON) were experimentally compared with their target full blend gasoline fuels. The study was conducted in a rapid compression machine (RCM) test facility and a direct test chamber (DTC) charge preparation approach was used for mixture preparation. Experiments were carried over the temperature range of 650K-900K and at 10 bar and 20 bar compressed pressure conditions for equivalence ratios of (Φ =) 0.6-1.3. Dilution in the reactant mixture was varied from 0% to 30% CO2 (by mass), with the O2:N2 mole ratio fixed at 1:3.76. This dilution strategy emulates exhaust gas recirculation (EGR) substitution in spark ignition (SI) engines. The multicomponent surrogate captured the reactivity trends of the gasoline-air mixtures reasonably well in comparison to the single component (iso-octane) surrogate.
Technical Paper

Fuel-to-Warm Methodology: Optimization Tool for Distributing Waste Heat during Warm-Up within the Powertrain System

2021-04-06
2021-01-0210
The heat generated by an internal combustion engine must be dissipated to maintain acceptable component temperatures throughout the entire powertrain system under all operating conditions. However, under cold start conditions it is beneficial to retain this available heat to achieve faster warm-up in order to reduce fuel consumption. In modern engines there are several components in the coolant circuit that are used to accelerate the warm-up of sub-system fluids such as the engine oil, transmission oil and axle oil. The magnitude of the fuel consumption reduction will depend on how these rapid warm-up devices are arranged, combined and controlled. This paper describes a methodology that was developed to optimize the distribution of coolant heat in the powertrain system during warm-up. A comparative study can be performed to optimize the arrangement of each heat exchanger in any given powertrain system to minimize cost and time early in development.
Technical Paper

Novel Methodology to Compute Halfshaft Joint Forces and Virtually Simulate Powertrain Wiggle

2021-04-06
2021-01-0665
Vibrations affect vehicle occupants and should be prevented early in design process. Powertrain (PT) wiggle is one of the well-known issues. It is the 3rd order lateral vibration, forced by half shaft inner LH/RH plunging tripod joints [1,2]. Lateral PT resonance (7-15Hz) occurs at certain vehicle speed during acceleration and may excite lateral, pitch and roll PT modes. Typically, PT wiggle occurs in speed range of 5-25kph. Vibration is noticeable on driver and passenger seats mostly in lateral direction. The inner half shaft joints are the major source of vibration. Unfortunately, existing MBD tools like Adams [3] are missing detailed tripod joint representation because of complex mechanical interactions inside the joint. At least three sliding contacts between tripod rollers and joint housing, lubricant inside the can and combination of rotation and plunging make the modeling too complicated.
Technical Paper

A Novel Strategy for Sizing the Mechanical Pump in a Passenger Car Automatic Transmission

2021-04-06
2021-01-0692
In recent decades, there has been a growing focus on improving overall vehicle efficiency and fuel economy due to growing customer awareness and more stringent environmental regulations. Effort has been placed on improving the engine efficiency and reducing the losses of the transmission and driveline. One essential component of this process is to correctly size the transmission oil pump as it is one of the main energy consumers in the powertrain. Conversely, the oil pump has a critical mission of ensuring reliable and high quality gear shift as well as supplying lubrication and cooling oil to various components in the transmission. This paper outlines a strategy to systematically understand and quantify the main requirements for sizing the oil pump to ensure adequate performance while minimizing the energy consumption of the pump. The proposed framework is a three-legged approach.
Technical Paper

A Study of Influence of Suspension on Driveline Torque and Evaluation of Vehicle Anti-Squat/Dive Characteristics Using a Planar Vehicle Dynamics Model

2021-04-06
2021-01-0693
Simplified vehicle dynamics models used to study the driveline durability are typically limited to the longitudinal dynamics and do not account for vertical and pitch dynamics. The influence of suspension on the vehicle ride and handling characteristics is studied extensively in the literature but its impact on the driveline torques is often not considered. In this paper, an effort is made to investigate the influence of suspension compliance on the driveline torque using a planar (longitudinal, pitch and vertical) vehicle dynamics model. An AWD vehicle is studied to understand its impact on the torque levels of both axles (primary and secondary). Subsequently the planar dynamics is explored in the context of anti-squat/anti-dive suspension. The primary focus of the paper is to predict the driveline torque.
Technical Paper

A Domain-Centralized Automotive Powertrain E/E Architecture

2021-04-06
2021-01-0786
This paper proposes a domain-centralized powertrain E/E (electrical and/or electronic) architecture for all-electric vehicles that features: a powerful master controller (domain controller) that implements most of the functionality of the domain; a set of smart actuators for electric motor(s), HV (High Voltage) battery pack, and thermal management; and a gateway that routes all hardware signals, including digital and analog I/O, and field bus signals between the domain controller and the rest of the vehicle that is outside of the domain. Major functional safety aspects of the architecture are presented and a safety architecture is proposed. The work represents an early E/E architecture proposal. In particular, detailed partitioning of software components over the domain’s Electronic Control Units (ECUs) has not been determined yet; instead, potential partitioning schemes are discussed.
Technical Paper

IC Engine Internal Cooling System Modelling Using 1D-CFD Methodology

2020-04-14
2020-01-1168
Internal combustion engine gets heated up due to continuous combustion of fuel. To keep engine working efficiently and prevent components damage due to very high temperature, the engine needs to be cooled down. Based on power output requirement and provision for cooling system, every engine has it’s unique cooling system. Liquid based cooling systems are majorly implemented in automobile. It’s important to keep in mind that during design phase that, cooling the engine will lower the power to fuel consumption ratio. Therefore, during lower ambient conditions, the cooling system should be able to uniformly increase the temperature of the engine components, engine oil and transmission oil. This is achieved by circulating the coolant through cooling jacket, engine oil heater and transmission oil heater, which will be heated by the combustion heat.
Technical Paper

Virtual Method for Electronic Stop-Start Simulation & VDV Prediction Using Modified Discrete Signal Processing for Short Time Signals

2020-04-14
2020-01-1270
Electronic Stop-Start (ESS) system automatically stops and restarts the engine to save energy, improve fuel economy and reduce emissions when the vehicle is stationary during traffic lights, traffic jams etc. The stop and start events cause unwanted vibrations at the seat track which induce discomfort to the driver and passengers in the vehicle. These events are very short duration events, usually taking less than a second. Time domain analysis can help in simulating this event but it is difficult to see modal interactions and root cause issues. Modal transient analysis also poses a limitation on defining frequency dependent stiffness and damping for multiple mounts. This leads to inaccuracy in capturing mount behavior at different frequencies. Most efficient way to simulate this event would be by frequency response analysis using modal superposition method.
X