Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Effects of Punch Shapes and Cutting Configurations on the Dimensional Accuracy of Punched Holes on an AHSS Sheet

2018-04-03
2018-01-0800
Dimensional accuracy of punched hole is an essential consideration for high-quality sheet metal forming. An out-of-shape hole can give rise to manufacturing issues in the subsequent production processes thus inducing quality defects on a vehicle body. To understand the effects of punch shapes and cutting configurations on punched hole diameter deviations, a systematical experimental study was conducted for multiple types of AHSS (DP1180, DP980, DP590) and one mild steel. Flat, conical and rooftop punches were tested respectively with three cutting clearances on each material. The measurement results indicated different diameter enlargement modes based on the punch profiles, and dimensional discrepancies were found to be more significant with the stronger materials and higher cutting clearance. To uncover the mechanism of punched hole enlargement, a series of finite element simulations were established for numerical investigation.
Technical Paper

HVAC System Bench Test Analysis for TXV Tuning

2018-04-03
2018-01-0070
In today’s automotive industry, the A/C (Air-conditioning) system is emerging into a high level of technological growth to provide quick cooling, warm up and maintaining the air quality of the cabin during all-weather conditions. In HVAC system, TXV plays vital role by separating high side to low side of vapor compression refrigeration system. It also regulates the amount of refrigerant flow to the evaporator based on A/C system load. The HVAC system bench laboratory conducts the test at different system load conditions to evaluate the outputs from tests during initial development stage to select the right TXV in terms of capacity and Superheat set point for a given system. This process is critical in HVAC developmental activity, since mule cars will be equipped with selected TXV for initial assessment of the system performance.
Technical Paper

A Novel DoE based Front-End Airflow Target Setting Approach for Optimum HVAC Cool Down Performance

2018-04-03
2018-01-0786
The front-end air flow conditions have a substantial impact on the cool down performance of a vehicle Heating, Ventilation and Air-Conditioning (HVAC) system. The performance of a mobile HVAC system is analyzed by conducting tests on the vehicle in a drive cell, subjecting it to different drive cycles. This now can be done virtually using system level simulation or one-dimensional (1D) tools. Target values for condenser air inlet velocity and temperature for these HVAC performance focused drive cycles needs to be established during the development phase to meet the cool down functional objectives of the vehicle. Thus, in the early stages of development, 1D tools play a major role. Condenser air flow should be sufficient and the temperature should be as low as possible at different vehicle operating conditions to have good air-conditioning (AC) performance.
Technical Paper

Simultaneous Durability Assessment and Relative Random Analysis Under Base Shake Loading Conditions

2017-03-28
2017-01-0339
For many automotive systems it is required to calculate both the durability performance of the part and to rule out the possibility of collision of individual components during severe base shake vibration conditions. Advanced frequency domain methods now exist to enable the durability assessment to be undertaken fully in the frequency domain and utilizing the most advanced and efficient analysis tools (refs 1, 2, 3, 4, 5). In recent years new capabilities have been developed which allow hyper-sized models with multiple correlated loadcases to be processed. The most advanced stress processing (eg, complex von-Mises) and fatigue algorithms (eg, Strain-Life) are now included. Furthermore, the previously required assumptions that the loading be stationary, Gaussian and random have been somewhat relaxed. For example, mixed loading like sine on random can now be applied.
Journal Article

Evaluation of Prog-Die Wear Properties on Bare DP1180 Steel

2017-03-28
2017-01-0310
The die wear up to 80,800 hits on a prog-die setup for bare DP1180 steel was investigated in real production condition. In total, 31 die inserts with the combination of 11 die materials and 9 coatings were evaluated. The analytical results of die service life for each insert were provided by examining the evolution of surface wear on inserts and formed parts. The moments of appearance of die defects, propagation of die defects, and catastrophic failure were determined. Moreover, the surface roughness of the formed parts for each die insert was characterized using Wyko NT110 machine. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for flange operations on bare DP 1180 steel and update OEM tooling standards based on the experimental results. The current study provides the guidance for the die material and coating selections in large volume production for next generation AHSSs.
Technical Paper

Dimension Study of Punched Hole Using Conical Tipped Punches

2016-04-05
2016-01-0364
Dimensional problems for punched holes on a sheet metal stamping part include being undersized and oversized. Some important relationships among tools and products, such as the effect of conical punch tip angle, are not fully understood. To study this effect, sheets of AA6016 aluminum and BH210 steel were punched by punches with different conical tip angles. The test method and test results are presented. The piercing force and withdrawing force when using conical punches were also studied. The results indicate that the oversize issue for a punched hole in a stamped panel is largely due to the combination of the conical tip effect and the stretching-release effect.
Journal Article

Automobile Powertrain Sound Quality Development Using a Design for Six Sigma (DFSS) Approach

2015-06-15
2015-01-2336
Automotive companies are studying to add extra value in their vehicles by enhancing powertrain sound quality. The objective is to create a brand sound that is unique and preferred by their customers since quietness is not always the most desired characteristic, especially for high-performance products. This paper describes the process of developing a brand powertrain sound for a high-performance vehicle using the DFSS methodology. Initially the customer's preferred sound was identified and analyzed. This was achieved by subjective evaluations through voice-of-customer clinics using vehicles of similar specifications. Objective data were acquired during several driving conditions. In order for the design process to be effective, it is very important to understand the relationship between subjective results and physical quantities of sound. Several sound quality metrics were calculated during the data analysis process.
X