Refine Your Search

Topic

Search Results

Technical Paper

A Quasi-Dimensional Model of Pre-Chamber Spark-Ignition Engines

2019-04-02
2019-01-0470
Increasingly stringent pollutant and CO2 emission standards require the car manufacturers to investigate innovative solutions to further improve the fuel economy of their fleets. Among these techniques, an extremely lean combustion has a large potential to simultaneously reduce the NOx raw emissions and the fuel consumption of spark-ignition engines. Application of pre-chamber ignition systems is a promising solution to realize a favorable air/fuel mixture ignitability and an adequate combustion speed, even with very lean mixtures. In this work, the combustion characteristics of an active pre-chamber system are experimentally investigated using a single-cylinder research engine. Conventional gasoline fuel is injected into the main chamber, while the pre-chamber is fed with compressed natural gas. In a first stage, an experimental campaign was carried out at various speeds, spark timings and air-fuel ratios.
Technical Paper

Modeling and Controls Development of 48 V Mild Hybrid Electric Vehicles

2018-04-03
2018-01-0413
The Advanced Light-Duty Powertrain and Hybrid Analysis tool (ALPHA) was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined with different powertrain technologies. The ALPHA desktop application was developed using MATLAB/Simulink. The ALPHA tool was used to evaluate technology effectiveness and off-cycle technologies such as air-conditioning, electrical load reduction technology and road load reduction technologies of conventional, non-hybrid vehicles for the Midterm Evaluation of the 2017-2025 LD GHG rule by the U.S. Environmental Protection Agency (EPA) Office of Transportation and Air Quality (OTAQ).
Journal Article

Alternative Heavy-Duty Engine Test Procedure for Full Vehicle Certification

2015-09-29
2015-01-2768
In 2015 the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Transportation's National Highway Traffic Safety Administration (NHTSA) proposed a new steady-state engine dynamometer test procedure by which heavy-duty engine manufacturers would be required to create engine fuel rate versus engine speed and torque “maps”.[1] These maps would then be used within the agencies' Greenhouse Gas Emission Model (GEM)[2] for full vehicle certification to the agencies' proposed heavy-duty fuel efficiency and greenhouse gas (GHG) emissions standards. This paper presents an alternative to the agencies' proposal, where an engine is tested over the same duty cycles simulated in GEM. This paper explains how a range of vehicle configurations could be specified for GEM to generate engine duty cycles that would then be used for engine testing.
Video

Teardown-Based Cost Assessment for Use in Setting Greenhouse Gas Emissions Standards

2012-06-18
The U.S. Environmental Protection Agency (EPA) contracted with FEV, Inc. to estimate the per-vehicle cost of employing selected advanced efficiency-improving technologies in light-duty motor vehicles. The development of transparent, reliable cost analyses that are accessible to all interested stakeholders has played a crucial role in establishing feasible and cost effective standards to improve fuel economy and reduce greenhouse gas (GHG) emissions. The FEV team, together with engineering staff from EPA's National Vehicle and Fuel Emissions Laboratory, and FEV's subcontractor, Munro & Associates, developed a robust costing methodology based on tearing down, to the piece part level, relevant systems, sub-systems, and assemblies from vehicles ?with and without? the technologies being evaluated.
Journal Article

Teardown-Based Cost Assessment for Use in Setting Greenhouse Gas Emissions Standards

2012-04-16
2012-01-1343
The U.S. Environmental Protection Agency (EPA) contracted with FEV, Inc. to estimate the per-vehicle cost of employing selected advanced efficiency-improving technologies in light-duty motor vehicles. The development of transparent, reliable cost analyses that are accessible to all interested stakeholders has played a crucial role in establishing feasible and cost effective standards to improve fuel economy and reduce greenhouse gas (GHG) emissions. The FEV team, together with engineering staff from EPA's National Vehicle and Fuel Emissions Laboratory, and FEV's subcontractor, Munro & Associates, developed a robust costing methodology based on tearing down, to the piece part level, relevant systems, sub-systems, and assemblies from vehicles “with and without” the technologies being evaluated.
Technical Paper

Development of an Emission Controls Concept for an IDI Heavy-Duty Diesel Engine Meeting 2007 Phase-In Emission Standards

2007-04-16
2007-01-0235
In order to allow continued production of the AM General Optimizer 6500 during MY 2007 through 2010 this IDI engine (Indirect Injection - swirl chamber) requires sophisticated aftertreatment controls while maintaining its fuel economy and durability. The main purpose of the development program was to retain the relatively inexpensive and simple base engine with distributor pump and waste-gated turbocharger, while adding hardware and software components that allow achievement of the phase-in emission standards for 2007 through 2010. The aftertreatment system consists of Diesel Oxidation Catalyst (DOC), NOx Adsorber Catalyst (or DeNOx Trap - DNT) and Diesel Particle Filter (DPF). In addition to the base hardware, an intake air throttle valve and an in-exhaust fuel injector were installed. The presented work will document the development process for a 2004 certified 6.5 l IDI heavy-duty diesel engine to comply with the 2007 heavy-duty emission standards.
Technical Paper

Evaluating Real-World Fuel Economy on Heavy Duty Vehicles using a Portable Emissions Measurement System

2006-10-31
2006-01-3543
Current SAE practices for evaluating potential improvements in fuel economy on heavy-duty vehicles rely on gravimetric measurements of fuel tanks. However, the recent evolution of portable emissions measurement systems (PEMS) offers an alternative means of evaluating real-world fuel economy that may be faster and more cost effective. This paper provides a direct comparison of these two methods based on a recent EPA study conducted at Southwest Research Institute. More than 228 on-road tests were performed on two pairs of class 8 tractor-trailers according to SAE test procedure J1321 in an assessment of various chassis components designed to reduce drag losses on the vehicle. During these tests, SEMTECH-D™ portable emissions measurement systems from Sensor's, Incorporated were operating in each of the vehicles to evaluate emissions and to provide a redundant measure of fuel economy.
Technical Paper

Fuel Economy Improvements and NOx Reduction by Reduction of Parasitic Losses: Effect of Engine Design

2006-10-31
2006-01-3474
Reducing aerodynamic drag and tire rolling resistance in trucks using cooled EGR engines meeting EPA 2004 emissions standards has been observed to result in increases in fuel economy and decreases in NOx emissions. We report here on tests conducted using vehicles equipped a non-EGR engine meeting EPA 2004 emission standards and an electronically-controlled engine meeting EPA 1998 emissions standards. The effects of trailer fairings and single-wide tires on fuel economy and NOx emissions were tested using SAE test procedure J1321. NOx emissions were measured using a portable emissions monitoring system (PEMS). Fuel consumption was estimated by a carbon balance on PEMS output and by the gravimetric method specified by test procedure J1321. Fuel consumption decreased and fuel economy increased by a maximum of about 10 percent, and NOx emissions decreased by a maximum of 20 percent relative to baseline.
Technical Paper

Effect of Single Wide Tires and Trailer Aerodynamics on Fuel Economy and NOx Emissions of Class 8 Line-Haul Tractor-Trailers

2005-11-01
2005-01-3551
We hypothesize that components designed to improve fuel economy by reducing power requirements should also result in a decrease in emissions of oxides of nitrogen (NOx). Fuel economy and NOx emissions of a pair of class 8 tractor-trailers were measured on a test track to evaluate the effects of single wide tires and trailer aerodynamic devices. Fuel economy was measured using a modified version of SAE test procedure J1321. NOx emissions were measured using a portable emissions monitoring system (PEMS). Fuel consumption was estimated by a carbon balance on PEMS output and correlated to fuel meter measurements. Tests were conducted using drive cycles simulating highway operations at 55 mph and 65 mph and suburban stop-and-go traffic. The tests showed a negative correlation (significant at p < 0.05) between fuel economy and NOx emissions. Single wide tires and trailer aerodynamic devices resulted in increased fuel economy and decreased NOx emissions relative to the baseline tests.
Technical Paper

On-road Testing and Characterization of Fuel Economy of Light-Duty Vehicles

2005-04-11
2005-01-0677
The potential discrepancy between the fuel economy shown on new vehicle labels and that achieved by consumers has been receiving increased attention of late. EPA has not modified its labeling procedures since 1985. It is likely possible that driving patterns in the U.S. have changed since that time. One possible modification to the labeling procedures is to incorporate the fuel economy measured over the emission certification tests not currently used in deriving the fuel economy label (i.e., the US06 high speed and aggressive driving test, the SC03 air conditioning test and the cold temperature test). This paper focuses on the US06 cycle and the possible incorporation of aggressive driving into the fuel economy label. As part of its development of the successor to the MOBILE emissions model, the Motor Vehicle Emission Modeling System (MOVES), EPA has developed a physically-based model of emissions and fuel consumption which accounts for different driving patterns.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

Direct Injection Gasoline Engines - Combustion and Design

1999-03-01
1999-01-0170
The charge motion controlled combustion concept for SI engines with direct fuel injection exhibits an excellent fuel economy and emission potential in comparison with other DI combustion concepts. It realizes a stable combustion behavior all over the engine map. Because injection and ignition timing has little bearing on emission and ignition safety, the new concept can be easily applied under DI specific operational conditions. The combination of fired engine tests and optical investigations with CFD calculations enables an efficient process optimization under the boundary conditions as imposed by the respective design. The high EGR tolerance enables a large reduction of NOx emission, which is the expected basic requirement to meet future emission standards. In addition to favorable part load behavior, the new combustion concept also displays all of the characteristics for a good full load behavior.
Technical Paper

Investigation into the Vehicle Exhaust Emissions of High Percentage Ethanol Blends

1995-02-01
950777
Six in-use vehicles were tested on a baseline gasoline and nine gasoline/ethanol blends to determine the effect of ethanol content in fuels on automotive exhaust emissions and fuel economy. The baseline gasoline was representative of average summer gasoline and served as the base from which the other fuels were blended. For the majority of the vehicles, total hydrocarbon, and carbon monoxide exhaust emissions as well as fuel economy decreased while NOx and acetaldehyde exhaust emissions increased as the ethanol content in the test fuel increased. Formaldehyde and carbon dioxide emissions were relatively unaffected by the addition of ethanol. The emission responses to the increased fuel oxygen levels were consistent with what would be expected from leaning-out the air/fuel ratio for a spark ignition engine. The results are shown graphically and a linear regression is performed utilizing the method of least squares to investigate statistically significant trends in the data.
Technical Paper

Evaluation of Heat Storage Technology for Quick Engine Warm-Up

1992-10-01
922244
The Schatz Heat Battery stores excess heat energy from the engine cooling system during vehicle operation. This excess energy may be returned to the coolant upon the ensuing cold start, shortening the engine warm-up period and decreasing cold start related emissions of unburned fuel and carbon monoxide (CO). A Heat Battery was evaluated on a test vehicle to determine its effect on unburned fuel emissions, CO emissions, and fuel economy over the cold start portion (Bag 1) of the Federal Test Procedure (FTP) at 24°C and -7°C ambient conditions. The Heat Battery was mounted in a vehicle fueled alternately with indolene clear (unleaded gasoline) and M85 high methanol blend fuels. Several Heat Battery/coolant flow configurations were evaluated to determine which would result in lowest cold start emissions.
Technical Paper

Evaluation of a Passenger Car Equipped with a Direct Injection Neat Methanol Engine

1992-02-01
920196
The cyclic and steady-state vehicle emissions, fuel economy, performance, and cold start behavior of an automobile equipped with a direct injection methanol engine are compared with those of three other comparable vehicles. One of the comparable vehicles was powered by a gasoline-fueled engine, and the other two were Diesels. One of the Diesel-powered vehicles was naturally aspirated and the other was turbocharged. All evaluations were made using the same road load horsepower and equivalent test weight. All the evaluations were conducted at low mileage. The emissions of the methanol vehicle are compared to California low emission vehicle standards, and to the emissions of another methanol vehicle.
Technical Paper

Trends in Alternate Measures of Vehicle Fuel Economy

1986-10-01
861426
This paper develops and discusses the 1978-85 time trends in alternative measures of vehicle fuel economy. Nine alternative measures are presented ranging from ton-miles per gallon to menu-weighted performance adjusted miles per gallon. For each alternative measure, trends for important groups of manufacturers are presented. Ail of the trends in alternative measures are compared to the percent improvement implied by the original 1978 and 1985 passenger car average fuel economy standards (AFES).
Technical Paper

Light Duty Automotive Trends Through 1986

1986-04-01
860366
This, the fourteenth in this series of papers, examines trends in fuel economy, technology usage and estimated 0 to 60 MPH acceleration time for model year 1986 passenger cars. Comparisons with previous year's data are made for the fleet as a whole and using three measures of vehicle/engine size: number of cylinders, EPA car class, and inertia weight class. Emphasis on vehicle performance and fuel metering has been expanded and analysis of individual manufacturers has been deemphasized; comparisons of the Domestic, European, and Japanese market sectors are given increased emphasis.
Technical Paper

Light Duty Automotive Fuel Economy … Trends thru 1985

1985-05-01
850550
This, the thirteenth in a series of papers on trends in EPA fuel economy, covers both passenger cars and light trucks and concentrates on the current model year, 1985. It differs from previous papers in two ways: 1) Model years 1975, 1980 and 1985 are highlighted, with the model years in between these rarely discussed; 2) The progress of the industry, as a whole, in improving fuel economy since 1975 is emphasized, and individual manufacturer data are de-emphasized. Conclusions are presented on the trends in fuel economy of the car and light truck fleets; the Domestic, European and Japanese market sectors; and various vehicle classes.
Technical Paper

Development of Adjustment Factors for the EPA City and Highway MPG Values

1984-02-01
840496
This paper describes the development of adjustment factors applicable to the EPA City and Highway MPG values. The paper discusses the data bases used, and the analytical methods employed to arrive at adjustment factors of 0.90 for the EPA City MPG value and 0.78 for the EPA Highway MPG value.
Technical Paper

Passenger Car Fuel Economy… Trends Through 1984

1984-02-01
840499
This the twelfth in a series of Papers on trends in EPA fuel economy, concentrates as usual on the current Model Year (1984). Final Corporate Average Fuel Economy (CAFE) production volumes and MPG figures have been used to update the data bases through the 1982 Model Year. This paper is different from earlier papers in four ways: 1) manufacturer-supplied production forecasts have been adjusted for both model years 1983 and 1984. 2) sales weighted MPG values at the nameplate level of aggregation are presented. 3) much of the analysis is stratified at the Domestic/European/Japanese manufacturer level, and 4) fuel economy analysis for Light Duty Trucks is not included. Conclusions are presented on the trends in fuel economy of the fleet as a whole and for various classes of vehicles.
X