Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Butanol Blending - a Promising Approach to Enhance the Thermodynamic Potential of Gasoline - Part 1

2011-08-30
2011-01-1990
Blending gasoline with oxygenates like ethanol, MTBE or ETBE has a proven potential to increase the thermodynamic efficiency by enhancing knock resistance. The present research focuses on assessing the capability of a 2- and tert-butanol mixture as a possible alternative to state-of-the-art oxygenates. The butanol mixture was blended into a non-oxygenated reference gasoline with a research octane number (RON) of 97. The butanol blending ratios were 15% and 30% by mass. Both the thermodynamic potential and the impact on emissions were investigated. Tests are performed on a highly boosted single-cylinder gasoline engine with high load capability and a direct injecting fuel system using a solenoid-actuated multi-hole injector. The engine is equipped with both intake and exhaust cam phasers. The engine has been chosen for the fuel investigation, as it represents the SI technology with a strongly increasing market share.
Technical Paper

Aspects of Powertrain Noise with Special Emphasis on Impulsive Noise

2007-05-15
2007-01-2411
NVH refinement is an important aspect of the powertrain development process. Powertrain NVH refinement is influenced by overall sound levels as well as sound quality. The sound quality and hence the level of powertrain NVH refinement can be negatively affected by the presence of excessive impulsive noise. This paper describes a process used to develop an understanding of impulsive powertrain noise. The paper begins with an introductory discussion of various sources of impulsive noise in an automotive powertrain. Following this, the paper outlines a process for identifying the source of the impulsive powertrain noise using examples from case studies. The remainder of the paper focuses on certain examples of impulsive noise such as Diesel knocking noise, injector ticking, impulsive cranktrain noise, and gear rattle. For these examples, the development of key objective metrics, optimization measures, and improvement potential are examined.
Technical Paper

NVH Refinement of Diesel Powered Sedans with Special Emphasis on Diesel Clatter Noise and Powertrain Harshness

2007-05-15
2007-01-2378
NVH refinement of passenger vehicles is crucial to customer acceptance of contemporary vehicles. This paper describes the vehicle NVH development process, with specific examples from a Diesel sedan application that was derived from gasoline engine-based vehicle architecture. Using an early prototype Diesel vehicle as a starting point, this paper examines the application of a Vehicle Interior Noise Simulation (VINS) technique in the development process. Accordingly, structureborne and airborne noise shares are analyzed in the time-domain under both steady-state and transient test conditions. The results are used to drive countermeasure development to address structureborne and airborne noise refinement. Examples are provided to highlight the refinement process for “Diesel knocking” under idle as well as transient test conditions. Specifically, the application of VINS to understanding the influence of high frequency dynamic stiffness of hydro-mounts on Diesel clatter noise is examined.
Technical Paper

Comprehensive Combustion Noise Optimization

2001-04-30
2001-01-1510
Combustion noise plays a considerable role in the acoustic tuning of gasoline and diesel engines. Even though noise levels of modern diesel engines reach extremely low values, they are still higher than those of conventional gasoline engines. On the other hand, new combustion procedures designed to improve fuel consumption lead to elevated combustion noise excitations as in case of today's direct injecting gasoline engines whose vibration excitation and airborne noise emissions are slightly increased during stratified operation. The partly conflicting development goals resulting from this can only be realized by integrating the NVH specialists' expertise into every development step from concept to SOP.
Technical Paper

Lean-Combustion Spark-Ignition Engine Exhaust Aftertreatment Using Non Thermal Plasma

1998-10-19
982512
Dielectric barrier discharges offer the advantage to excite molecules to reaction processes on a low temperature level in an O2 containing exhaust gas of gasoline or diesel engines. With the aim of a flexible coaxial reactor and a compact and efficient generator the influence of geometric and electric parameters on the reduction of exhaust gas components was determined. Geometric parameters studied were gap width, length, contour of the reactor. Electric parameters were: voltage curve, voltage height, frequency and electric power. Using the advantage of low temperature reactions it was possible to reduce the HC emission of a gasoline engine by about 35% within an electric power of 1000 W.
Technical Paper

Methods to Analyze Non-Regulated Emissions from Diesel Engines

1994-10-01
941952
Passenger cars with diesel engines have better fuel economy than cars with gasoline engines. Also diesel engines typically have lower HC and CO emissions than all but the very best, state-of-the-art gasoline engines. On the other hand, diesel NOx and particulate emissions are higher, but recent developments have significantly reduced diesel particulate emissions. While the regulated emissions from both engines are well known, there are relatively few data on the non-regulated emissions for modern diesel engines.
Technical Paper

Intelligent Alcohol Fuel Sensor

1990-02-01
900231
For the use in flexible fuel vehicles able to operate with mixtures of alcohol fuels and gasoline, an intelligent alcohol sensor has been developed. Based on the measurement of the dielectric constant, this sensor overcomes the problems with optical measuring principles; these problems are due to sensitivity to different contents of aromatics. To increase the accuracy, a microprocessor evaluates the input signals (dielectric constant and other parameters). Thus, a compensation of misdetection due to impurities can also be achieved. The output characteristic of the sensor can be chosen freely; the output voltage can correspond to the alcohol content as well as to the required correction factor for the injection time.
X