Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Analysis of the Effect of Heat Pipes on Enhancement of HEV/PHEV Battery Thermal Management

2021-04-06
2021-01-0219
Thermal management of lithium-Ion battery (LIB) has become very critical issue in recent years. One of the challenges for the design and packaging of the battery is to maintain the battery temperature within acceptable ranges and also reduce temperature gradients within the battery cells. Controlling the battery temperature is essential for the battery performance and the long-term battery life. Increased difference between battery cell temperatures can lead to non-uniform charging and non-uniform ageing of battery cells. The purpose of this paper is to investigate available technologies using heat pipes as a means of improving battery thermal management. Several studies have been conducted regarding the effect of heat pipes on battery temperature. However, in this paper we present a comprehensive study of heat pipes effects through transient analysis of a complete vehicle thermal model.
Journal Article

Transient Modelling of Vehicle Exhaust Surface Temperature

2016-04-05
2016-01-0280
In this paper, the development of a transient thermal analysis model for the exhaust system is presented. Given the exhaust gas temperature out of the engine, a software tool has been developed to predict changes in exhaust gas temperature and exhaust surface temperature under various operating conditions. The software is a thermal solver that will predict exhaust gas and wall surface temperatures by modeling all heat transfer paths in the exhaust system which includes multi-dimensional conduction, internal forced/natural convection, external forced/natural convection, and radiation. The analysis approach involves the breaking down of the thermal system into multiple components, which include the exhaust system (manifold, takedown pipe, tailpipe, etc.), catalytic converter, DPF (diesel particulate filter), if they exist, thermal shields, etc. All components are modeled as 1D porous and 1D non-porous flow streams with 3D wall layers (solid and air gaps).
X