Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

TWC+LNT/SCR Systems for Satisfying Tier 2, Bin 2 Emission Standards on Lean-Burn Gasoline Engines

2015-04-14
2015-01-1006
A laboratory study was performed to assess the potential capability of TWC+LNT/SCR systems to satisfy the Tier 2, Bin 2 emission standards for lean-burn gasoline applications. It was assumed that the exhaust system would need a close-coupled (CC) TWC, an underbody (U/B) TWC, and a third U/B LNT/SCR converter to satisfy the emission standards on the FTP and US06 tests while allowing lean operation for improved fuel economy during select driving conditions. Target levels for HC, CO, and NOx during lean/rich cycling were established. Sizing studies were performed to determine the minimum LNT/SCR volume needed to satisfy the NOx target. The ability of the TWC to oxidize the HC during rich operation through steam reforming was crucial for satisfying the HC target.
Journal Article

Passive TWC+SCR Systems for Satisfying Tier 2, Bin 2 Emission Standards on Lean-Burn Gasoline Engines

2015-04-14
2015-01-1004
A laboratory study was performed to assess the potential capability of passive TWC+SCR systems to satisfy the Tier 2, Bin 2 emission standards for lean-burn gasoline applications. In this system, the TWC generates the NH3 for the SCR catalyst from the feedgas NOx during rich operation. Therefore, this approach benefits from high feedgas NOx during rich operation to generate high levels of NH3 quickly and low feedgas NOx during lean operation for a low rate of NH3 consumption. It was assumed that the exhaust system needed to include a close-coupled (CC) TWC, an underbody (U/B) TWC, and an U/B SCR converter to satisfy the emission standards during the FTP and US06 tests while allowing lean operation for improved fuel economy during select driving conditions. Target levels for HC, CO, and NOx during lean/rich cycling were established. With a 30 s lean/10 s rich cycle and 200 ppm NO lean, 1500 ppm NO rich and the equivalent of 3.3 L of SCR volume were required to satisfy the NOx target.
Journal Article

Effect of Unburned Methyl Esters on the NOx Conversion of Fe-Zeolite SCR Catalyst

2009-11-02
2009-01-2777
Engine and flow reactor experiments were conducted to determine the impact of biodiesel relative to ultra-low-sulfur diesel (ULSD) on inhibition of the selective catalytic reduction (SCR) reaction over an Fe-zeolite catalyst. Fe-zeolite SCR catalysts have the ability to adsorb and store unburned hydrocarbons (HC) at temperatures below 300°C. These stored HCs inhibit or block NOx-ammonia reaction sites at low temperatures. Although biodiesel is not a hydrocarbon, similar effects are anticipated for unburned biodiesel and its organic combustion products. Flow reactor experiments indicate that in the absence of exposure to HC or B100, NOx conversion begins at between 100° and 200°C. When exposure to unburned fuel occurs at higher temperatures (250°-400°C), the catalyst is able to adsorb a greater mass of biodiesel than of ULSD. Experiments show that when the catalyst is masked with ULSD, NOx conversion is inhibited until it is heated to 400°C.
Journal Article

Laboratory Study of Soot, Propylene, and Diesel Fuel Impact on Zeolite-Based SCR Filter Catalysts

2009-04-20
2009-01-0903
Selective Catalytic Reduction (SCR) catalysts have been designed to reduce NOx with the assistance of an ammonia-based reductant. Diesel Particulate Filters (DPF) have been designed to trap and eventually oxidize particulate matter (PM). Combining the SCR function within the wall of a high porosity particulate filter substrate has the potential to reduce the overall complexity of the aftertreatment system while maintaining the required NOx and PM performance. The concept, termed Selective Catalytic Reduction Filter (SCRF) was studied using a synthetic gas bench to determine the NOx conversion robustness from soot, coke, and hydrocarbon deposition. Soot deposition, coke derived from propylene exposure, and coke derived from diesel fuel exposure negatively affected the NOx conversion. The type of soot and/or coke responsible for the inhibited NOx conversion did not contribute to the SCRF backpressure.
Journal Article

Detection, Origin and Effect of Ultra-Low Platinum Contamination on Diesel-SCR Catalysts

2008-10-06
2008-01-2488
This paper discusses the poisoning of a selective catalytic reduction (SCR) catalyst by trace levels of platinum originating from an upstream diesel oxidation catalyst (DOC). A diesel aftertreatment system consisting of a DOC, urea based SCR Catalyst and a DPF was aged and evaluated on a 6.4 liter diesel engine dynamometer. The SCR catalyst system consisted of an Fe-zeolite catalyst followed by a Cu-zeolite catalyst. After approximately 400 hours of engine operation at varied exhaust flow rates and temperatures, deactivation of the SCR catalyst was observed. A subsequent detailed investigation revealed that the Cu catalyst was not deactivated and the front half of the Fe-based catalyst showed severe deactivation. The deactivated portion of the catalyst showed high activity of NH3 conversion to NOx and N2O formation. The cause of the deactivation was identified to be the presence of trace Pt contamination.
Journal Article

Combined Fe-Cu SCR Systems with Optimized Ammonia to NOx Ratio for Diesel NOx Control

2008-04-14
2008-01-1185
Selective catalytic reduction (SCR) is a viable option for control of oxides of nitrogen (NOx) from diesel engines. Currently, copper zeolite (Cu-zeolite) SCR catalysts are favored for configurations where the exhaust gas temperature is below 450°C for the majority of operating conditions, while iron zeolite (Fe-zeolite) SCR catalysts are preferred where NOx conversion is needed at temperatures above 450°C. The selection of Cu-zeolite or Fe-zeolite SCR catalysts is based on the different performance characteristics of these two catalyst types. Cu-zeolite catalysts are generally known for having efficient NOx reduction at low temperatures with little or no NO2, and they tend to selectively oxidize ammonia (NH3) to N2 at temperatures above 400°C, leading to poor NOx conversion at elevated temperatures.
Technical Paper

Influence of Hydrocarbon Storage on the Durability of SCR Catalysts

2008-04-14
2008-01-0767
Selective catalytic reduction (SCR) is a technology capable of meeting Tier 2 Bin 5 emissions levels of oxides of nitrogen (NOX) for diesel engines. Base metal zeolite catalysts show the best combination of thermal durability and NOX conversion activity. It is shown in this work that some base metal zeolite catalysts can store high levels of hydrocarbons (HCs). Also, base metal zeolite catalysts can catalyze oxidation of HCs under certain conditions. Oxidation of stored hydrocarbons can lead to permanent catalyst deactivation due to the exotherm generated in the SCR catalyst (over-temperature condition leading to SCR catalyst damage). This paper discusses a laboratory bench test to characterize hydrocarbon storage and burn-off characteristics of several SCR catalyst formulations, as well as engine dynamometer tests showing hydrocarbon storage and exotherm generation.
X