Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of a CAE Method for Predicting Vehicle Launch Performance with Various VCT Strategies

2018-04-03
2018-01-0487
Powertrain and vehicle technology is rapidly changing to meet the ever increasing demands of customers and government regulations. In some cases technologies that are designed to improve one attribute may impact others or interact with other design decisions in unexpected ways. Understanding the interactions and optimizing the transient performance at the vehicle level may require controls and calibration that is not available until late in the vehicle development process, after hardware changes are no longer possible. As a result, an efficient, up front, CAE process for assessing the interaction of various design choices on transient vehicle behavior is desirable. Building, calibrating and validating a vehicle system model with full controls and a mature calibration is very time consuming and often requires significant experimental data that is not available until it is too late to make hardware changes.
Technical Paper

Engine Cycle Simulation of Ethanol and Gasoline Blends

2003-10-27
2003-01-3093
Ethanol is one of many alternative transportation fuels that can be burned in internal combustion engines in the same ways as gasoline and diesel. Compared to hydrogen and electric energy, ethanol is very similar to gasoline in many aspects and can be delivered to end-users by the same infrastructures. It can be produced from biomass and is considered renewable. It is expected that the improvement in fuels over the next 20 years will be by blending biomass-based fuels with fossil fuels using existing technologies in present-day automobiles with only minor modifications, even though the overall costs of using biomass-based fuels are still considerably higher than conventional fuels. Ethanol may represent a significant alternative fuel source, especially during the transition from fossil-based fuels to more exotic power sources. Mapping engines for flexible fuel vehicles (FFV), however, would be very costly and time consuming, even with the help of model-based engine mapping (MBM).
Technical Paper

Optimization Techniques and Results for the Operating Modes of a Camless Engine

2003-03-03
2003-01-0033
Electronic control of valve timing and event duration in a camless engine enables the optimization of fuel economy, performance, and emissions at each engine operating condition. This flexible engine technology can offer significant benefits to each of these areas, but optimization techniques become crucial to achieving these benefits and understanding the principles behind them. Optimization techniques for an I4 - 2.0L camless ZETEC dynamometer engine have been developed for a variety of areas including: Cold Starts Cylinder Deactivation Full Load Idle Transient A/F control The procedure for the optimization of each of these areas will be presented in detail, utilizing both steady state and transient dynamometer testing. Experimental data will be discussed and the principles governing the response of the engine will be explained. Selection criteria for determining an optimum strategy for the different modes will be presented and recommendations will be discussed.
X