Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Development of Time-Temperature Analysis Algorithm for Estimation of Lithium-Ion Battery Useful Life

2024-04-09
2024-01-2191
Due to the recent progress in electrification, lithium-ion batteries have been widely used for electric and hybrid vehicles. Lithium-ion batteries exhibit high energy density and high-power density which are critical for vehicle development with high driving range enhanced performance. However, high battery temperature can negatively impact the battery life, performance, and energy delivery. In this paper, we developed and applied an analytical algorithm to estimate battery life-based vehicle level testing. A set of vehicle level tests were selected to represent customer duty cycles. Thermal degradation models are applied to estimate battery capacity loss during driving and park conditions. Due to the sensitivity of Lithium-Ion batteries to heat, the effect of high ambient temperatures throughout the year is considered as well. The analysis provides an estimate of the capacity loss due to calendar and cyclic effects throughout the battery life.
Technical Paper

C-V2X LiDAR-Based Non-Line of Sight Object Detection and Localization for Valet Parking Applications

2024-04-09
2024-01-2040
Cellular Vehicle-to-Everything (C-V2X) is considered an enabler for fully automated driving. It can provide the needed information about traffic situations and road users ahead of time compared to the onboard sensors which are limited to line-of-sight detections. This work presents the investigation of the effectiveness of utilizing the C-V2X technology for a valet parking collision mitigation feature. For this study a LiDAR was mounted at the FEV North America parking lot in a hidden intersection with a C-V2X roadside unit. This unit was used to process the LiDAR point cloud and transmit the information of the detected objects to an onboard C-V2X unit. The received data was provided as input to the path planning and controls algorithms so that the onboard controller can make the right decision while approaching the hidden intersection. FEV’s Smart Vehicle Demonstrator was utilized to test the C-V2X setup and the developed algorithms.
Technical Paper

Optimum Shifting of Hybrid and Battery Electric Powertrain Systems with Motors before and after a Transmission

2024-04-09
2024-01-2143
This paper proposes an optimization-based transmission gear shifting strategy for electrified powertrains with a transmission. With the demand for reduced vehicle emissions, electrified propulsion systems have garnered significant attention due to their potential to improve vehicle efficiency and performance. An electrified propulsion system architecture of significance includes multiple electric motors and a transmission where some driveline actuators can transmit torque through changing gear ratios. If there is at least one electric motor arranged before the input of the transmission and at least one after the transmission output, a unique design opportunity arises to shift gears in the most energy efficient manner.
Technical Paper

Proactive Battery Energy Management Using Navigation Information

2024-04-09
2024-01-2142
In this paper, a control strategy for state of charge (SOC) allocation using navigation data for Hybrid Electric Vehicle (HEV) propulsion systems is proposed. This algorithm dynamically defines and adjusts a SOC target as a function of distance travelled on-line, thereby enabling proactive management of the energy store in the battery. The proposed approach incorporates variances in road resistance and adheres to geolocation constraints, including ultra-low emission zones (uLEZ). The anticipated advantages are particularly pronounced during scenarios involving extensive medium-to-long journeys characterized by abrupt topological changes or the necessity for exclusive electric vehicle (EV) mode operation. This novel solution stands to significantly enhance both drivability and fuel economy outcomes.
Technical Paper

Analysis of flatness based active damping control of hybrid vehicle transmission

2024-04-09
2024-01-2782
This paper delves into the investigation of flatness-based active damping control for hybrid vehicle transmissions. The main objective is to improve the current in-production controller performances without the need for additional sensors or observers. The primary goals include improving torque setpoint tracking, enhancing robustness margins, and ensuring zero steady-state torque correction. The investigation proceeds in several steps: Initially, both the general differential flatness property and the identification of flat outputs in linear dynamical systems are revisited. Subsequently, the bond graph formalism is employed to deduce straightforwardly the dynamical equations of the system. Next, a new flat output of the vehicle transmission is identified and utilized to formulate the trajectory tracking controller to align with the required control objectives and to fulfill the system constraints.
Technical Paper

Torque Converter Modeling for Torque Control of Hybrid Electric Powertrains

2024-04-09
2024-01-2780
This paper introduces a novel approach to modeling Torque Converter (TC) in conventional and hybrid vehicles, aiming to enhance torque delivery accuracy and efficiency. Traditionally, the TC is modelled by estimating impeller and turbine torque using the classical Kotwicki’s set of equations for torque multiplication and coupling regions or a generic lookup table based on dynamometer (dyno) data in an electronic control unit (ECU) which can be calibration intensive, and it is susceptible to inaccurate estimations of impeller and turbine torque due to engine torque accuracy, transmission oil temperature, hardware variation, etc. In our proposed method, we leverage an understanding of the TC inertia – torque dynamics and the knowledge of the polynomial relationship between slip speed and fluid path torque. We establish a mathematical model to represent the polynomial relationship between turbine torque and slip speed.
Technical Paper

Model-Based Approach for Optimization of Propulsion System of a Heavy-Duty Class 8 Fuel Cell Electric Vehicle

2024-04-09
2024-01-2167
The tightening emissions regulations across the globe pose significant challenges to vehicle OEMs. As a result, OEMs are diversifying their powertrain solutions e.g., CNG/Propane based conventional powertrains, BEVs, H2 ICE, FCEV, etc. to meet these regulations. More recently, the ‘CARB Advanced Clean Trucks’ and ‘EPA GHG Phase 3’ regulations are forcing manufacturers to increasingly adopt zero tailpipe emission solutions. While passenger vehicle applications are trending towards a single consensus i.e., BEVs, the heavy-duty on-road applications are challenged with unique requirements of high payload capacity, higher range, lower sales volumes, higher durability, short refueling time, etc. These requirements are driving manufacturers to consider FCEV as an alternative powertrain solution to BEV specifically for higher payload capacity, and range applications.
Technical Paper

Impact of Sampling Time, Actuation/measurement Delays and Controller Calibration on Closed-loop Frequency Response for Non-linear Systems

2023-04-11
2023-01-0453
During input tracking, closed-loop performance is strongly influenced by the dynamic of the system under control. Internal and external delays, such as actuation and measurement delays, have a detrimental effect on the bandwidth and stability. Additionally, production controllers are discrete in nature and the sampling time selection is another critical factor to be considered. In this paper we analyze the impact of both transported delay and controller sampling time on tracking performance using an electric machine speed-control problem as an example. A simple linear PI controller is used for this exercise. Furthermore, we show how the PI parameters can be adjusted to maintain a certain level of performance as the delays and sampling times are modified. This is achieved through an optimization algorithm that minimizes a specifically designed cost function.
Technical Paper

Optimization of Aluminum Sleeve Design for the tow eye Durability Using DFSS Approach

2023-04-11
2023-01-0092
The automotive industry is moving towards larger SUVs and also electrification is a need to meet the carbon neutrality target. As a result, we see an increase in overall gross vehicle weight (GVW), with the additional weight coming from the HV battery pack, electric powertrain, and other electrical systems. Tow-eye is an essential component that is provided with every vehicle to use for towing during an emergency vehicle breakdown. The tow-eye is usually connected to the retainer/sleeve available in the bumper system and towed using the recovery vehicle or other car with towing provision. Therefore, the tow-eye should meet the functional targets under standard operating conditions. This study is mainly for cars with bumper and tow-eye sleeves made of aluminum which is used in the most recent development of vehicles for weight-saving opportunities. Tow-eye systems in aluminum bumpers are designed to avoid any bending or buckling of the sleeve during towing for whatever the GVW loads.
Technical Paper

Nonlinear, Concave, Constrained Optimization in Six-Dimensional Space for Hybrid-Electric Powertrains

2023-04-11
2023-01-0550
One of the building blocks of the Stellantis hybrid powertrain embedded control software computes the maximum and minimum values of objective functions, such as output torque, as a function of engine torque, hybrid motor torque and other variables. To test such embedded software, an offline reference function was created. The reference function calculates the ideal minimum and maximum values to be compared with the output of the embedded software. This article presents the offline reference function with an emphasis on mathematical novelties. The reference function computes the minimum and maximum points of a linear objective function as a function of six independent variables, subject to 42 linear and two nonlinear constraints. Concave domains, curved surfaces, disjoint domains and multiple local extremum points challenge the algorithm. As a theorem, the conditions and methods for running trigonometric calculations in 6D Euclidean space are presented.
Technical Paper

Drivable Area Estimation for Autonomous Agriculture Applications

2023-04-11
2023-01-0054
Autonomous farming has gained a vast interest due to the need for increased farming efficiency and productivity as well as reducing operating cost. Technological advancement enabled the development of Autonomous Driving (AD) features in unstructured environments such as farms. This paper discusses an approach of utilizing satellite images to estimate the drivable areas of agriculture fields with the aid of LiDAR sensor data to provide the necessary information for the vehicle to navigate autonomously. The images are used to detect the field boundaries while the LiDAR sensor detects the obstacles that the vehicle encounters during the autonomous driving as well as its type. These detections are fused with the information from the satellite images to help the path planning and control algorithms in making safe maneuvers. The image and point cloud processing algorithms were developed in MATLAB®/C++ software and implemented within the Robot Operating System (ROS) middleware.
Technical Paper

Vehicle Path-Tracking Control with Dual-Motor SBW System

2023-04-11
2023-01-0692
Improvement of vehicle path-tracking performance not only affects the vehicle driving safety and comfort but is also essential for autonomous driving technology. The current research focuses on vehicle path-tracking control study and application of dual-motor SBW system. The preview driver model is developed by considering the lateral and yaw tracking. MPC (model predictive control) and LQR (linear quadratic regulator) path following controllers are developed to compare the tracking control performance. A steer-by-wire (SBW) system of dual-motor configuration is designed with permanent magnet synchronous motor (PMSM) control scheme. Finally, the proposed control methods are verified with different driving cases, which shows that the system can effectively achieve small tracking errors in the simulation, and also can be applied in the future autonomous driving or advanced driver assistance system to maintain the lateral and yaw errors within a safe range during path-tracking.
Technical Paper

LiDAR-Based Fail-Safe Emergency Maneuver for Autonomous Vehicles

2023-04-11
2023-01-0578
Although SAE level 5 autonomous vehicles are not yet commercially available, they will need to be the most intelligent, secure, and safe autonomous vehicles with the highest level of automation. The vehicle will be able to drive itself in all lighting and weather conditions, at all times of the day, on all types of roads and in any traffic scenario. The human intervention in level 5 vehicles will be limited to passenger voice commands, which means level 5 autonomous vehicles need to be safe and capable of recovering fail operational with no intervention from the driver to guarantee the maximum safety for the passengers. In this paper a LiDAR-based fail-safe emergency maneuver system is proposed to be implemented in the level 5 autonomous vehicle.
Technical Paper

Transient Electrochemical Modeling and Performance Investigation Under Different Driving Conditions for 144Ah Li-ion Cell with Two Jelly Rolls

2023-04-11
2023-01-0513
Recently, the automotive industry has experienced rapid growth in powertrain electrification, with more and more battery electric vehicles (BEV) and hybrid electric vehicles being launched. Lithium-ion batteries play an important role due to their high energy capacity and power density, however they experience high heat generation in their operation, and if not properly cooled it can lead to serious safety issues as well as lower performance and durability. In that way, good prediction of a battery behavior is crucial for successful design and management. This paper presents a 1D electrochemical model development of a 144 Ah prismatic rolled cell using the GT-Autolion software with a pseudo 2D approach. The model correlation is done at cell level comparing model results and test data of cell open circuit voltage at different temperatures and voltage and temperature profile under different C-rates and ambient temperatures.
Technical Paper

Accurate Automotive Spinning Wheel Predictions Via Deformed Treaded Tire on a Full Vehicle Compared to Full Width Moving Belt Wind Tunnel Results

2023-04-11
2023-01-0843
As the automotive industry is quickly changing towards electric vehicles, we can highlight the importance of aerodynamics and its critical role in reaching extended battery ranges for electric cars. With all new smooth underbodies, a lot of attention has turned into the effects of rim designs and tires brands and the management of these tire wakes with the vehicle. Tires are one of the most challenging areas for aerodynamic drag prediction due to its unsteady behavior and rubber deformation. With the simulation technologies evolving fast regarding modeling spinning tires for aerodynamics, this paper takes the prior work and data completed by the authors and investigates the impact on the flow fields and aerodynamic forces using the most recent developments of an Immerse Boundary Method (IBM). IBM allows us to mimic realistically a rotating and deformed tire using Lattice Boltzmann methods.
Technical Paper

Three-Dimensional Thermal Simulation of a Hybrid Vehicle with Energy Consumption Estimation and Prediction of Battery Degradation under Modern Drive-Cycles

2023-04-11
2023-01-0135
As more electric vehicles (BEV, HEV, PHEV, etc.) are adopted in the upcoming decades, it is becoming increasingly important to conduct vehicle-level thermal simulations under different drive-cycle conditions while incorporating the various subsystem thermal losses. Thermal management of the various heat sources in the vehicle is essential both in terms of ensuring passenger safety as well as maintaining all the subsystems within their corresponding safe temperature limits. It is also imperative that these thermal simulations include energy consumption prediction, while considering the effect of battery degradation both in terms of increased thermal losses as well as reduction in the vehicle’s range. For this purpose, a three-dimensional transient thermal analysis framework was coupled with an electrochemical P2D-based battery model and a vehicle dynamics model to test different scenarios and their effect on a hybrid vehicle’s range and the lithium-ion battery life.
Technical Paper

Cybersecurity by Agile Design

2023-04-11
2023-01-0035
ISO/SAE 21434 [1] Final International Standard was released September 2021 to great fanfare and is the most prominent standard in Automotive Cybersecurity. As members of the Joint Working Group (JWG) the authors spent 5 years developing the 84 pages of precise wording acceptable to hundreds of contributors. At the same time the auto industry had been undergoing a metamorphosis probably unmatched in its hundred-year history. A centerpiece of the metamorphosis is the adoption of the Agile development method to meet market demands for time-to-market and flexibility of design. Unfortunately, a strategic decision was made by the JWG to focus ISO/SAE 21434 on the V-Model method. Agile does not break ISO/SAE 21434. Agile is a framework that can be adapted to suit any process. In the end the goals are the same regardless of development method; security by design must be achieved.
Technical Paper

Evaluation of 48V Technologies to Meet Future CO2 and Low NOx Emission Regulations for Medium Heavy-Duty Diesel Engines

2022-03-29
2022-01-0555
The Environmental Protection Agency (EPA) and California Air Resources Board (CARB) have recently announced rulemakings focused on tighter emission limits for oxides of nitrogen (NOx) from heavy-duty trucks. As part of the new rulemaking CARB has proposed a Low Load Cycle (LLC) to specifically evaluate NOx emission performance over real-world urban and vocational operation typically characterized by low engine loads, thereby demanding the implementation of continuous active thermal management of the engine and aftertreatment system. This significant drop in NOx levels along with continued reduction in the Green House Gas (GHG) limits poses a more significant challenge for the engine developer as the conventional emission reduction approaches for one species will likely result in an undesirable increase in the other species.
Technical Paper

HD-Map Based Ground Truth to Test Automated Vehicles

2022-03-29
2022-01-0097
Over the past decade there has been significant development in Automated Driving (AD) with continuous evolution towards higher levels of automation. Higher levels of autonomy increase the vehicle Dynamic Driving Task (DDT) responsibility under certain predefined Operational Design Domains (in SAE level 3, 4) to unlimited ODD (in SAE level 5). The AD system should not only be sophisticated enough to be operable at any given condition but also be reliable and safe. Hence, there is a need for Automated Vehicles (AV) to undergo extensive open road testing to traverse a wide variety of roadway features and challenging real-world scenarios. There is a serious need for accurate Ground Truth (GT) to locate the various roadway features which helps in evaluating the perception performance of the AV at any given condition. The results from open road testing provide a feedback loop to achieve a mature AD system.
Technical Paper

3D FEA Thermal Modeling with Experimentally Measured Loss Gradient of Large Format Ultra-Fast Charging Battery Module Used for EVs

2022-03-29
2022-01-0711
A large amount of heat is generated in electric vehicle battery packs during high rate charging, resulting in the need for effective cooling methods. In this paper, a prototype liquid cooled large format Lithium-ion battery module is modeled and tested. Experiments are conducted on the module, which includes 31Ah NMC/Graphite pouch battery cells sandwiched by a foam thermal pad and heat sinks on both sides. The module is instrumented with twenty T-type thermocouples to measure thermal characteristics including the cell and foam surface temperature, heat flux distribution, and the heat generation from batteries under up to 5C rate ultra-fast charging. Constant power loss tests are also performed in which battery loss can be directly measured.
X