Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Hardware and Virtual Test-Rigs for Automotive Steel Wheels Design

2020-04-14
2020-01-1231
The aim of this paper is to study in deep the peculiar test-rigs and experimental procedures adopted to the fulfilment of the principal requirements of automotive steel wheels, in particular regarding fatigue damaging. In the discussion, the standard requirements, the OEM specifications and the dimensional and geometric tolerances are approached. As result of an increasingly necessity to improve the performance of the components, innovative virtual test benches are presented. Differently from their traditional precursors, virtual test-rigs give an extended view of the physical behaviour of the component as the possibility to monitor stress-strain distribution in deep. In the first section, the state of the art and the specifications are listed. Secondly, the adopted hardware test-rigs as the experimental tests are described in detail. In the third one, proposed virtual test-rig is discussed.
Technical Paper

A Modal-Geometrical Selection Criterion for Master Nodes Applied to Engine Components

2011-04-12
2011-01-0498
Usually, both an experimental modal analysis or a numerical modal analysis performed on reduced model present the problem of master nodes selection. A methodology based on the experience is normally used or computationally heavy criterion can be applied. In that paper, the Modal-Geometrical Selection Criterion (MoGeSeC) is applied to a crankshaft, both for an EMA (experimental modal analysis) and for a reduction procedure. Then the results are compared with other literature criteria. As far as the EMA is concerned, the nodes suggested by MoGeSeC and other criteria are used for identification of the component. The connection conditions between components are origin of uncertainty but in that case the comparison is done for each methodology in the same conditions. In that way MoGeSeC proves to be a very quick and accurate method because the nodes it selects depicts very well the dynamic behavior of the components.
Technical Paper

Integrated CAD/CAE Functional Design for Engine Components and Assembly

2011-04-12
2011-01-1071
In the present paper, starting from a first attempt design of engine components, a CAD/CAE integrated approach for designing engine is proposed. As first step, some typological quantities are setting in order to define the designed engine, for example the number of cylinders, displacements, thermodynamic cycle and geometrical constraints. Using literature approach and tailored design methodologies, the developed software provides the geometric parameters of the main engine components: crankshaft, piston, wrist pin, connecting rod, bedplate, engine block, cylinder head, bearings, valvetrain. Form the geometrical parameters, the developed software, using 3D CAD parametric models, defines a first functional model of each component and of their mutual interactions. Then a numerical analysis can be evaluated and it provides important feedback result for design targets. In the paper the particular case of a crank mechanism model is presented.
X