Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Limitations of Sector Mesh Geometry and Initial Conditions to Model Flow and Mixture Formation in Direct-Injection Diesel Engines

2019-04-02
2019-01-0204
Sector mesh modeling is the dominant computational approach for combustion system design optimization. The aim of this work is to quantify the errors descending from the sector mesh approach through three geometric modeling approaches to an optical diesel engine. A full engine geometry mesh is created, including valves and intake and exhaust ports and runners, and a full-cycle flow simulation is performed until fired TDC. Next, an axisymmetric sector cylinder mesh is initialized with homogeneous bulk in-cylinder initial conditions initialized from the full-cycle simulation. Finally, a 360-degree azimuthal mesh of the cylinder is initialized with flow and thermodynamics fields at IVC mapped from the full engine geometry using a conservative interpolation approach. A study of the in-cylinder flow features until TDC showed that the geometric features on the cylinder head (valve tilt and protrusion into the combustion chamber, valve recesses) have a large impact on flow complexity.
Journal Article

Simulation of Organic Rankine Cycle Power Generation with Exhaust Heat Recovery from a 15 liter Diesel Engine

2015-04-14
2015-01-0339
The performance of an organic Rankine cycle (ORC) that recovers heat from the exhaust of a heavy-duty diesel engine was simulated. The work was an extension of a prior study that simulated the performance of an experimental ORC system developed and tested at Oak Ridge National laboratory (ORNL). The experimental data were used to set model parameters and validate the results of that simulation. For the current study the model was adapted to consider a 15 liter turbocharged engine versus the original 1.9 liter light-duty automotive turbodiesel studied by ORNL. Exhaust flow rate and temperature data for the heavy-duty engine were obtained from Southwest Research Institute (SwRI) for a range of steady-state engine speeds and loads without EGR. Because of the considerably higher exhaust gas flow rates of the heavy-duty engine, relative to the engine tested by ORNL, a different heat exchanger type was considered in order to keep exhaust pressure drop within practical bounds.
Journal Article

Turbocharger Turbine Inlet Isentropic Pressure Observer Model

2015-04-14
2015-01-1617
Exhaust pressures (P3) are hard parameters to measure and can be readily estimated, the cost of the sensors and the temperature in the exhaust system makes the implementation of an exhaust pressure sensor in a vehicle control system a costly endeavor. The contention with measured P3 is the accuracy required for proper engine and vehicle control can sometimes exceed the accuracy specification of market available sensors and existing models. A turbine inlet exhaust pressure observer model based on isentropic expansion and heat transfer across a turbocharger turbine was developed and investigated in this paper. The model uses 4 main components; an open loop P3 orifice flow model, a model of isentropic expansion across the turbine, a turbine and pipe heat transfer models and an integrator with the deviation in the downstream turbine outlet parameter.
Technical Paper

Port Injection of Water into a DI Hydrogen Engine

2015-04-14
2015-01-0861
Hydrogen fueled internal combustion engines have potential for high thermal efficiencies; however, high efficiency conditions can produce high nitrogen oxide emissions (NOx) that are challenging to treat using conventional 3-way catalysts. This work presents the results of an experimental study to reduce NOx emissions while retaining high thermal efficiencies in a single-cylinder research engine fueled with hydrogen. Specifically, the effects on engine performance of the injection of water into the intake air charge were explored. The hydrogen fuel was injected into the cylinder directly. Several parameters were varied during the study, including the amount of water injected into the intake charge, the amount of fuel injected, the phasing of the fuel injection, the number of fuel injection events, and the ignition timing. The results were compared with expectations for a conventionally operated hydrogen engine where load was controlled through changes in equivalence ratio.
Journal Article

Towards an Optimum Aftertreatment System Architecture

2015-01-14
2015-26-0104
Aftertreatment system design involves multiple tradeoffs between engine performance, fuel economy, regulatory emission levels, packaging, and cost. Selection of the best design solution (or “architecture”) is often based on an assumption that inherent catalyst activity is unaffected by location within the system. However, this study acknowledges that catalyst activity can be significantly impacted by location in the system as a result of varying thermal exposure, and this in turn can impact the selection of an optimum system architecture. Vehicle experiments with catalysts aged over a range of mild to moderate to severe thermal conditions that accurately reflect select locations on a vehicle were conducted on a chassis dynamometer. The vehicle test data indicated CO and NOx could be minimized with a catalyst placed in an intermediate location.
Journal Article

Effects of Oxygenated Fuels on Combustion and Soot Formation/Oxidation Processes

2014-10-13
2014-01-2657
The Leaner Lifted-Flame Combustion (LLFC) strategy offers a possible alternative to low temperature combustion or other globally lean, premixed operation strategies to reduce soot directly in the flame, while maintaining mixing-controlled combustion. Adjustments to fuel properties, especially fuel oxygenation, have been reported to have potentially beneficial effects for LLFC applications. Six fuels were selected or blended based on cetane number, oxygen content, molecular structure, and the presence of an aromatic hydrocarbon. The experiments compared different fuel blends made of n-hexadecane, n-dodecane, methyl decanoate, tri-propylene glycol monomethyl ether (TPGME), as well as m-xylene. Several optical diagnostics have been used simultaneously to monitor the ignition, combustion and soot formation/oxidation processes from spray flames in a constant-volume combustion vessel.
Technical Paper

CFD Investigation on the Influence of In-Cylinder Mixture Distribution from Multiple Pilot Injections on Cold Idle Behaviour of a Light Duty Diesel Engine

2014-10-13
2014-01-2708
Cold idle operation of a modern design light duty diesel engine and the effect of multiple pilot injections on stability were investigated. The investigation was initially carried out experimentally at 1000rpm and at −20°C. Benefits of mixture preparation were initially explored by a heat release analysis. Kiva 3v was then used to model the effect of multiple pilots on in-cylinder mixture distribution. A 60° sector of mesh was used taking advantage of rotational symmetry. The combustion system and injector arrangements mimic the HPCR diesel engine used in the experimental investigation. The CFD analysis covers evolutions from intake valve closing to start of combustion. The number of injections was varied from 1 to 4, but the total fuel injected was kept constant at 17mm3/stroke. Start of main injection timing was fixed at 7.5°BTDC.
Journal Article

Fatigue Behavior of Stainless Steel Sheet Specimens at Extremely High Temperatures

2014-04-01
2014-01-0975
Active regeneration systems for cleaning diesel exhaust can operate at extremely high temperatures up to 1000°C. The extremely high temperatures create a unique challenge for the design of regeneration structural components near their melting temperatures. In this paper, the preparation of the sheet specimens and the test set-up based on induction heating for sheet specimens are first presented. Tensile test data at room temperature, 500, 700, 900 and 1100°C are then presented. The yield strength and tensile strength were observed to decrease with decreasing strain rate in tests conducted at 900 and 1100°C but no strain rate dependence was observed in the elastic properties for tests conducted below 900°C. The stress-life relations for under cyclic loading at 700 and 1100°C with and without hold time are then investigated. The fatigue test data show that the hold time at the maximum stress strongly affects the stress-life relation at high temperatures.
Journal Article

Transient Build-up and Effectiveness of Diesel Exhaust Gas Recirculation

2014-04-01
2014-01-1092
Modern diesel engines employ a multitude of strategies for oxides of nitrogen (NOx) emission abatement, with exhaust gas recirculation (EGR) being one of the most effective technique. The need for a precise control on the intake charge dilution (as a result of EGR) is paramount since small fluctuations in the intake charge dilution at high EGR rates may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency, especially at low to mid-engine loads. The control problem becomes more pronounced during transient engine operation; currently the trend is to momentarily close the EGR valve during tip-in or tip-out events. Therefore, there is a need to understand the transient EGR behaviour and its impact on the intake charge development especially under unstable combustion regimes such as low temperature combustion.
Journal Article

An Experimental Study of Diesel-Fuel Property Effects on Mixing-Controlled Combustion in a Heavy-Duty Optical CI Engine

2014-04-01
2014-01-1260
Natural luminosity (NL) and chemiluminescence (CL) imaging diagnostics are employed to investigate fuel-property effects on mixing-controlled combustion, using select research fuels-a #2 ultra-low sulfur emissions-certification diesel fuel (CF) and four of the Fuels for Advanced Combustion Engines (FACE) diesel fuels (F1, F2, F6, and F8)-that varied in cetane number (CN), distillation characteristics, and aromatic content. The experiments were performed in a single-cylinder heavy-duty optical compression-ignition (CI) engine at two injection pressures, three dilution levels, and constant start-of-combustion timing. If the experimental results are analyzed only in the context of the FACE fuel design parameters, CN had the largest effect on emissions and efficiency.
Journal Article

A Systems Approach to the Development and Use of FMEA in Complex Automotive Applications

2014-04-01
2014-01-0740
The effective deployment of FMEAs within complex automotive applications faces a number of challenges, including the complexity of the system being analysed, the need to develop a series of coherently linked FMEAs at different levels within the systems hierarchy and across intrinsically interlinked engineering disciplines, and the need for coherent linkage between critical design characteristics cascaded through the systems levels with their counterparts in manufacturing. The approach presented in this paper to address these challenges is based on a structured Failure Mode Avoidance (FMA) framework which promotes the development of FMEAs within an integrated Systems Engineering approach. The effectiveness of the framework is illustrated through a case study, centred on the development of a diesel exhaust aftertreatment system.
Technical Paper

Clean Combustion in a Diesel Engine Using Direct Injection of Neat n-Butanol

2014-04-01
2014-01-1298
The study investigated the characteristics of the combustion, the emissions and the thermal efficiency of a direct injection diesel engine fuelled with neat n-butanol. Engine tests were conducted on a single cylinder four-stroke direct injection diesel engine. The engine ran at 6.5 bar IMEP and 1500 rpm engine speed. The intake pressure was boosted to 1.0 bar (gauge), and the injection pressure was controlled at 60 or 90 MPa. The injection timing and the exhaust gas recirculation (EGR) rate were adjusted to investigate the engine performance. The effect of the engine load on the engine performance was also investigated. The test results showed that the n-butanol fuel had significantly longer ignition delay than that of diesel fuel. n-Butanol generally led to a rapid heat release pattern in a short period, which resulted in an excessively high pressure rise rate. The pressure rise rate could be moderated by retarding the injection timing and lowering the injection pressure.
Technical Paper

A Preliminary Research on Turbulent Flame Propagation Combustion Modeling Using a Direct Chemical Kinetics Model

2013-09-08
2013-24-0023
The present work focused on modeling turbulent flame propagation combustion process using a direct chemical kinetics model. Firstly, the theory of turbulent flame propagation combustion modeling directly using chemical kinetics is given in detail. Secondly, two important techniques in this approach are described. One technique is the selection of chemical kinetics mechanism, and the other one is the selection of AMR (adaptive mesh refinement) level. A reduced chemical kinetics mechanism with minor modification by the authors of this paper which is suitable for simulating gasoline engine under warm up operating conditions was selected in this work. This mechanism was validated over some operating conditions close to some engine cases. The effect of AMR level on combustion simulation is given, and an optimum AMR level of both velocity and temperature is recommended.
Journal Article

Hydrogen DI Dual Zone Combustion System

2013-04-08
2013-01-0230
Internal combustion (IC) engines fueled by hydrogen are among the most efficient means of converting chemical energy to mechanical work. The exhaust has near-zero carbon-based emissions, and the engines can be operated in a manner in which pollutants are minimal. In addition, in automotive applications, hydrogen engines have the potential for efficiencies higher than fuel cells.[1] In addition, hydrogen engines are likely to have a small increase in engine costs compared to conventionally fueled engines. However, there are challenges to using hydrogen in IC engines. In particular, efficient combustion of hydrogen in engines produces nitrogen oxides (NOx) that generally cannot be treated with conventional three-way catalysts. This work presents the results of experiments which consider changes in direct injection hydrogen engine design to improve engine performance, consisting primarily of engine efficiency and NOx emissions.
Journal Article

Determining Soot Distribution in the Vehicle Exhaust Downstream of a Faulty Diesel Particulate Filter

2013-04-08
2013-01-1562
New emissions certification requirements for medium duty vehicles (MDV) meeting chassis dynamometer regulations in the 8,500 lb to 14,000 lb weight classes as well as heavy duty (HD) engine dynamometer certified applications in both the under 14,000 lb and over 14,000 lb weight classes employing large diameter exhaust pipes (up to 4″) have created new exhaust stream sampling concerns. Current On-Board-Diagnostic (OBD) dyno certified particulate matter (PM) requirements were/are 7x the standard for 2010-2012 applications with a planned phase in down to 3x the standard by 2017. Chassis certified applications undergo a similar reduction down to 1.75x the standard for 2017 model year (MY) applications. Failure detection of a Diesel Particulate Filter (DPF) at these low detection limits facilitates the need for a particulate matter sensor.
Technical Paper

Design Optimization of an Emissions Sample Probe Using a 3D Computational Fluid Dynamics Tool

2013-04-08
2013-01-1571
Emissions sample probes are widely used in engine and vehicle emissions development testing. Tailpipe bag summary data is used for certification, but the time-resolved (or modal) emissions data at various points along the exhaust system is extremely important in the emission control technology development process. Exhaust gas samples need to be collected at various locations along the exhaust aftertreatment system. Typically, a tube with a small diameter is inserted inside the exhaust pipe to avoid any significant effect on flow distribution. The emissions test equipment draws a gas sample from the exhaust stream at a constant volumetric flow rate (typically around 10 SLPM). The sample probe tube delivers exhaust gas from the exhaust pipe to emissions test equipment through multiple holes on the surface of tube. There can be multiple rows of holes at different axial planes along the length of the sample probe as well as multiple holes on a given axial plane of the sample probe.
Technical Paper

Optical and Infrared In-Situ Measurements of EGR Cooler Fouling

2013-04-08
2013-01-1289
The use of exhaust gas recirculation (EGR) in internal combustion engines has significant impacts on combustion and emissions. EGR can be used to reduce in-cylinder NOx production, reduce emitted particulate matter, and enable advanced forms of combustion. To maximize the benefits of EGR, the exhaust gases are often cooled with on-engine liquid to gas heat exchangers. A common problem with this approach is the build-up of a fouling layer inside the heat exchanger due to thermophoresis and condensation, reducing the effectiveness of the heat exchanger in lowering gas temperatures. Literature has shown the effectiveness to initially drop rapidly and then approach steady state after a variable amount of time. The asymptotic behavior of the effectiveness has not been well explained. A range of theories have been proposed including fouling layer removal, changing fouling layer properties, and cessation of thermophoresis.
Video

OBD Experiences: A Ford Perspective

2012-01-24
Some the OBD-II regulations have been around for a long time or seem to be intuitively obvious. It is easy to assume to assume that everyone knows how to implement them correctly, that is, until someone actually reads the words and tries to do it. Most often, these issues come up when modifying existing OBD features, not when creating completely new ones. This presentation contains a few examples of features that should have been easy to implement, but turned out not to be easy or simple. Presenter Paul Algis Baltusis, Ford Motor Co.
Journal Article

Laboratory and Vehicle Demonstration of “2nd-Generation” LNT + in-situ SCR Diesel Emission Control Systems

2011-04-12
2011-01-0308
Diesel NOx emissions control utilizing combined Lean NOx Trap (LNT) and so-called passive or in-situ Selective Catalytic Reduction (SCR) catalyst technologies (i.e. with reductant species generated by the LNT) has been the subject of several previous papers from our laboratory [ 1 - 2 ]. The present study focuses on hydrocarbon (HC) emissions control via the same LNT+SCR catalyst technology under FTP driving conditions. HC emissions control can be as challenging as NOx control under both current and future federal and California/Green State emission standards. However, as with NOx control, the combined LNT+SCR approach offers advantages for HC emission control over LNT-only aftertreatment. The incremental conversion obtained with the SCR catalyst is shown, both on the basis of vehicle and laboratory tests, to result primarily from HC adsorbed on the SCR catalyst during rich LNT purges that reacts during subsequent lean engine operation.
X