Refine Your Search

Topic

Author

Search Results

Technical Paper

MMLV: Door Design and Component Testing

2015-04-14
2015-01-0409
The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-I vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine resulting in a significant environmental benefit and fuel reduction. This paper reviews the mass reduction and structural performance of aluminum, magnesium, and steel components for a lightweight multi material door design for a C/D segment passenger vehicle. Stiffness, durability, and crash requirements are assessed.
Journal Article

Influence of Test Procedure on Friction Behavior and its Repeatability in Dynamometer Brake Performance Testing

2014-09-28
2014-01-2521
The efforts of the ISO “Test Variability Task Force” have been aimed at improving the understanding and at reducing brake dynamometer test variability during performance testing. In addition, dynamometer test results have been compared and correlated to vehicle testing. Even though there is already a vast amount of anecdotal evidence confirming the fact that different procedures generate different friction coefficients on the same brake corner, the availability of supporting data to the industry has been elusive up to this point. To overcome this issue, this paper focuses on assessing friction levels, friction coefficient sensitivity, and repeatability under ECE, GB, ISO, JASO, and SAE laboratory friction evaluation tests.
Technical Paper

Benefit of Structural Adhesives in Full Car Crash Applications

2014-04-01
2014-01-0811
Structural adhesives are widely used across the automotive industry for several reasons like scale-up of structural performance and enabling multi-material and lightweight designs. Development engineers know in general about the effects of adding adhesive to a spot-welded structure, but they want to quantify the benefit of adding adhesives on weight reduction or structural performance. A very efficient way is to do that by applying analytical tools. But, in most of the relevant non-linear load cases the classical lightweight theory can only help to get a basic understanding of the mechanics. For more complex load cases like full car crash simulations, the Finite Element Method (FEM) with explicit time integration is being applied to the vehicle development process. In order to understand the benefit of adding adhesives to a body structure upfront, new FEM simulation tools need to be established, which must be predictive and efficient.
Technical Paper

Comparison of Water Strategy Tools for Automotive Manufacturing

2014-04-01
2014-01-1958
Tools are now publicly available that can potentially help a company assess the impact of its water use and risks in relation to their global operations and supply chains. In this paper we describe a comparative analysis of two publicly available tools, specifically the WWF/DEG Water Risk Filter and the WBCSD Global Water Tool that are used to measure the water impact and risk indicators for industrial facilities. By analyzing the risk assessments calculated by these tools for different scenarios that include varying facilities from different industries, one can better gauge the similarities and differences between these water strategy tools. Several scenarios were evaluated using the water tools, and the results are compared and contrasted. As will be shown, the results can vary significantly.
Technical Paper

Friction Stir Spot Welding of a High Ductility Aluminum Alloy

2014-04-01
2014-01-0793
High ductility cast aluminum alloys are seeing more use in vehicles as a greater effort is made to replace components made from heavier steel and iron alloys with lighter weight alloys such as aluminum. High ductility cast aluminum has significant advantages by allowing for complex shape and considerable consolidation of parts in body structures. However, joining can be a challenge because one popular method for aluminum joining, self-piercing riveting (SPR), requires a ductility of greater than 10%, forcing the common high ductility Al alloys to undergo a T6 heat treatment which adds cost and potential distortion issues to Al component. In this study, friction stir spot welding was investigated as a potential joining technique for this material in the as-cast condition. Samples of as-cast Aural-2™ alloy were joined to Aural-2™, 5754, and 6061 alloys, to determine the manufacturing feasibility, weld strength, and fatigue strength using this joining technique.
Journal Article

Fatigue Behavior of Stainless Steel Sheet Specimens at Extremely High Temperatures

2014-04-01
2014-01-0975
Active regeneration systems for cleaning diesel exhaust can operate at extremely high temperatures up to 1000°C. The extremely high temperatures create a unique challenge for the design of regeneration structural components near their melting temperatures. In this paper, the preparation of the sheet specimens and the test set-up based on induction heating for sheet specimens are first presented. Tensile test data at room temperature, 500, 700, 900 and 1100°C are then presented. The yield strength and tensile strength were observed to decrease with decreasing strain rate in tests conducted at 900 and 1100°C but no strain rate dependence was observed in the elastic properties for tests conducted below 900°C. The stress-life relations for under cyclic loading at 700 and 1100°C with and without hold time are then investigated. The fatigue test data show that the hold time at the maximum stress strongly affects the stress-life relation at high temperatures.
Technical Paper

Influence of the Local Mechanical Behavior on Component Deformation in a Mg Alloy Thin-Walled Frame Casting

2012-04-16
2012-01-0770
A demonstration structure was cast in AM60. The structure, known as the Generic Frame Casting or GFC, was designed specifically to mimic features seen in castings for closure applications. Excised samples were subsequently removed from different areas of the casting and tested under axial loading conditions. Component level tests were also conducted. Comparison of the excised sample results and the component level testing indicated the influence of local properties on the component level deformation. It was shown that varying the casting processing conditions could change the local ductility and yield strength in different areas of casting with the same geometry. Lowering the local ductility decreased the total displacement in a component level test and lowered the amount of energy absorption. Therefore, understanding the processing conditions and their influence on the local properties is important for predicting behavior in a component level test.
Journal Article

Optimization Strategies to Explore Multiple Optimal Solutions and Its Application to Restraint System Design

2012-04-16
2012-01-0578
Design optimization techniques are widely used to drive designs toward a global or a near global optimal solution. However, the achieved optimal solution often appears to be the only choice that an engineer/designer can select as the final design. This is caused by either problem topology or by the nature of optimization algorithms to converge quickly in local/global optimal or both. Problem topology can be unimodal or multimodal with many local and/or global optimal solutions. For multimodal problems, most global algorithms tend to exploit the global optimal solution quickly but at the same time leaving the engineer with only one choice of design. The paper explores the application of genetic algorithms (GA), simulated annealing (SA), and mixed integer problem sequential quadratic programming (MIPSQP) to find multiple local and global solutions using single objective optimization formulation.
Technical Paper

Automatic Verification of Embedded Software of Automotive Electronic Modules based on Program Traces Executions

2011-10-04
2011-36-0367
The development of embedded systems in automotive environment has brought a strong expansion in the number of applications dependent of programmable devices. A failure in any of these systems may cause different types of damages. Therefore, it requires a high confidence in their operation. Many of these faults are inserted during the coding process. A tool for formal verification of the implemented code could allow the detection of possible errors that could not be encountered during the testing phase. In this paper, we propose a method for verifying software from the reduced model of the software built automatically with information from multiple traces of program executions. To illustrate the application of the proposed method a case study for an automotive electronic module that controls the windshield wiper is presented.
Technical Paper

Constant Q Transform for Automotive NVH Signal Analysis

2010-10-06
2010-36-0373
The constant Q transform consists of a geometrically spaced filter bank, which is close to the wavelet transform due to the feature of its increasing time resolution for high frequencies. On the other hand, it can be processed using the well-known FFT algorithm. In this sense, this tool is a middle term between Fourier and wavelet analyses, which can be used for stationary and non-stationary signals. Automotive NVH signals can be stationary (e.g., idle, cruise) or non-stationary, i.e., time-varying signals (e.g., door closing/opening, run-up, rundown). The objective of this work is to propose the use of the constant Q transform, developed originally for musical signal processing, for automotive NVH (run up, impact strip and door closing) time-frequency analyses. Also, similarities and differences of the proposed tool when compared with Fourier and wavelet analyses are addressed.
Technical Paper

Methods for Modeling and Code Generation for Custom Lookup Tables

2010-04-12
2010-01-0941
Lookup tables and functions are widely used in real-time embedded automotive applications to conserve scarce processor resources. To minimize the resource utilization, these lookup tables (LUTs) commonly use custom data structures. The lookup function code is optimized to process these custom data structures. The legacy routines for these lookup functions are very efficient and have been in production for many years. These lookup functions and the corresponding data structures are typically used for calibration tables. The third-party calibration tools are specifically tailored to support these custom data structures. These tools assist the calibrators in optimizing the control algorithm performance for the targeted environment for production. Application software typically contains a mix of both automatically generated software and manually developed code. Some of the same calibration tables may be used in both auto generated and hand-code [ 1 ] [ 2 ].
Technical Paper

FEA Predictions and Test Results from Magnesium Beams in Bending and Axial Compression

2010-04-12
2010-01-0405
Finite element analysis (FEA) predictions of magnesium beams are compared to load versus displacement test measurements. The beams are made from AM60B die castings, AM30 extrusions and AZ31 sheet. The sheet and die cast beams are built up from two top hat sections joined with toughened epoxy adhesive and structural rivets. LS-DYNA material model MAT_124 predicts the magnesium behavior over a range of strain rates and accommodates different responses in tension and compression. Material test results and FEA experience set the strain to failure limits in the FEA predictions. The boundary conditions in the FEA models closely mimic the loading and constraint conditions in the component testing. Results from quasi-static four-point bend, quasi-static axial compression and high-speed axial compression tests of magnesium beams show the beam's behavior over a range of loadings and test rates. The magnesium beams exhibit significant material cracking and splitting in all the tests.
Technical Paper

Mechanical and Thermophysical Properties of Magnesium Alloy Extrusions

2010-04-12
2010-01-0410
Magnesium alloy extrusions offer potentially more mass saving compared to magnesium castings. One of the tasks in the United States Automotive Materials Partnership (USAMP) ?Magnesium Front End Research and Development? (MFERD) project is to evaluate magnesium extrusion alloys AM30, AZ31 and AZ61 for automotive body applications. Solid and hollow sections were made by lowcost direct extrusion process. Mechanical properties in tension and compression were tested in extrusion, transverse and 45 degree directions. The tensile properties of the extrusion alloys in the extrusion direction are generally higher than those of conventional die cast alloys. However, significant tension-compression asymmetry and plastic anisotropy need to be understood and captured in the component design.
Journal Article

Drawbead Restraining Force Modeling with Anisotropic Hardening

2010-04-12
2010-01-0983
A detailed investigation of the influence of anisotropic hardening models on drawbead restraining force is presented in this paper. The recently modified Yoshida model is adopted to characterize the anisotropic hardening behavior for steels. A two-dimensional drawbead model is used and the restraining forces corresponding to several different bead penetrations are obtained and compared against experimental results. The comparison of the predicted results for the Modified Yoshida Model with isotropic hardening models indicates that the anisotropic hardening gives lower drawbead restraining forces in general. The impact of hardening models on springback is also presented, and it's demonstrated that the springback amount predicted by the modified Yoshida model is much closer to the experimental data than that predicted by conventional isotropic hardening model.
Journal Article

Deformation Analysis of Incremental Sheet Forming

2010-04-12
2010-01-0991
Incremental Sheet Forming (ISF) is an emerging sheet metal prototyping technology where a part is formed as one or more stylus tools are moving in a pre-determined path and deforming the sheet metal locally while the sheet blank is clamped along its periphery. A deformation analysis of incremental forming process is presented in this paper. The analysis includes the development of an analytical model for strain distributions based on part geometry and tool paths; and numerical simulations of the forming process with LS-DYNA. A skew cone is constructed and used as an example for the study. Analytical and numerical results are compared, and excellent correlations are found. It is demonstrated that the analytical model developed in this paper is reliable and efficient in the prediction of strain distributions for incremental forming process.
Technical Paper

Permanent Mold Casting and Creep Behavior of Mg - 4 Al - 4 X: (Ca, Ce, La, Sr) Alloys

2007-04-16
2007-01-1027
Creep-resistant magnesium alloys for automotive powertrain applications offer significant potential for vehicle weight reduction. In this study permanent mold casting, microstructure and creep behavior have been investigated for a series of ternary magnesium alloys (Mg-4Al-4X (X: Ca, Ce, La, Sr) wt%) and AXJ530 (Mg-5Al-3Ca-0.15Sr, wt%). A permanent mold was instrumented with twelve thermocouples and mold temperature was monitored during the casting process. Average mold temperature increased from 200°C to 400°C during a typical alloy casting series (fifteen to twenty castings). The cast microstructure for all alloys consists of primary α-Mg globular phase surrounded by eutectic structure which is composed of intermetallic(s) and α-Mg magnesium phases. The primary cell size of the AXJ530 increased from 18 to 24 μm with increasing mold temperature and a similar trend is expected for all alloys.
Technical Paper

Robustness Plan for Flex Fuel Vehicles

2004-11-16
2004-01-3301
This paper describes the steps utilized in the development of the Flex Fuel program by the Ford South America Product Development team to implement a reliability plan. A reliability plan, understood as series of tools to avoid failure mode occurrence, is particularly important when introducing a new technology. Robustness, as the ability of a system to perform its intended function in the presence of variable operational conditions, is contained in the reliability concept and is a key aspect of this plan. Several factors that could affect the vehicle performance were listed, classified and prioritized in order to establish a preventive action plan. The tools were used first at the vehicle level, and then cascaded down to subsystem and component level. Also, with the results of this analysis, design verification methods were enhanced to capture real world usage conditions.
Technical Paper

Design and Analysis of the Ford GT Spaceframe

2004-03-08
2004-01-1255
The Ford GT is a high performance sports car designed to compete with the best that the global automotive industry has to offer. A critical enabler for the performance that a vehicle in this class must achieve is the stiffness and response of the frame structure to the numerous load inputs from the suspension, powertrain and occupants. The process of designing the Ford GT spaceframe started with a number of constraints and performance targets derived through vehicle dynamics CAE modeling, crash performance requirements, competitive benchmarking and the requirement to maintain the unique styling of the GT40 concept car. To achieve these goals, an aluminum spaceframe was designed incorporating 35 different extrusion cross-sections, 5 complex castings, 4 smaller node castings and numerous aluminum stampings.
Technical Paper

The Ford GT Transaxle - Tailor Made in 2 Years

2004-03-08
2004-01-1260
This paper describes the rapid development of the Ford GT transmission, from concept phase to production, where the technical challenges involved are implicit in the specifications provided. It presents the steps taken at a project management level to expedite development, as well as the tools used to design and rate components at the design stage. Examples of concurrent engineering are given as well as management techniques used to predict and address key risks. In addition, details of analysis and test procedures are given, underlining their contribution to the rapid introduction of the transmission to the market place.
Technical Paper

Rapid Evaluation of Powertrain Subsystems and Components

2000-11-13
2000-01-3545
This article describes both a computer-aided engineering tool - a computer model - utilized in accelerating design tasks and also the process of building a powertrain design knowledge. The computer model, which integrates engineering and analysis phases into the design process, has been developed to enable rapid evaluation of new powertrain concepts. The model determines the basic geometry of engine and transmission subsystems and components, and allows automation of the engineering and analysis processes. Examples of application of the tool in evaluation of powertrain concepts and the design of components and subsystems are also given.
X