Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Idle Vibration Analysis and Evaluation Utilizing a Full-Vehicle NVH Simulator

2015-06-15
2015-01-2334
Realistically experiencing the sound and vibration data through actually listening to and feeling the data in a full-vehicle NVH simulator remarkably aids the understanding of the NVH phenomena and speeds up the decision-making process. In the case of idle vibration, the sound and vibration of the idle condition are perceived simultaneously, and both need to be accurately reproduced simultaneously in a simulated environment in order to be properly evaluated and understood. In this work, a case is examined in which a perceived idle quality of a vehicle is addressed. In this case, two very similar vehicles, with the same powertrain but somewhat different body structures, are compared. One has a lower subjective idle quality rating than the other, despite the vehicles being so similar.
Technical Paper

Sound Package Design for Lightweight Vehicles

2015-06-15
2015-01-2343
OEMs are racing to develop lightweight vehicles as government regulations now mandate automakers to nearly double the average fuel economy of new cars and trucks by 2025. Lightweight materials such as aluminum, magnesium and carbon fiber composites are being used as structural members in vehicle body and suspension components. The reduction in weight in structural panels increases noise transmission into the passenger compartment. This poses a great challenge in vehicle sound package development since simply increasing weight in sound package components to reduce interior noise is no longer an option [1]. This paper discusses weight saving approaches to reduce noise level at the sources, noise transmission paths, and transmitted noise into the passenger compartment. Lightweight sound package materials are introduced to treat and reduce airborne noise transmission into multi-material lightweight body structure.
Journal Article

Quantifying Hands-Free Call Quality in an Automobile

2015-06-15
2015-01-2335
Hands-free phone use is the most utilized use case for vehicles equipped with infotainment systems with external microphones that support connection to phones and implement speech recognition. Critically then, achieving hands-free phone call quality in a vehicle is problematic due to the extremely noisy nature of the vehicle environment. Noise generated by wind, mechanical and structural, tire to road, passengers, engine/exhaust, HVAC air pressure and flow are all significant contributors and sources of noise. Other factors influencing the quality of the phone call include microphone placement, cabin acoustics, seat position of the talker, noise reduction of the hands-free system, etc. This paper describes the work done to develop procedures and metrics to quantify the effects that influence the hands-free phone call quality.
Journal Article

An Iterative Application of Multi-Disciplinary Optimization for Vehicle Body Weight Reduction Based on 2015 Mustang Product Development

2015-04-14
2015-01-0470
Designing a vehicle body involves meeting numerous performance requirements related to different attributes such as NVH, Durability, Safety, and others. Multi-Disciplinary Optimization (MDO) is an efficient way to develop a design that optimizes vehicle performance while minimizing the weight. Since a body design evolves in course of the product development cycle, it is essential to repeat the MDO process several times as a design matures and more accurate data become available. This paper presents a real life application of the MDO process to reduce weight while optimizing performance over the design cycle of the 2015 Mustang. The paper discusses the timing and results of the applied Multi-Disciplinary Optimization process. The attributes considered during optimization include Safety, Durability and Body NVH. Several iterations of MDO have been performed at different milestones in the design cycle leading to a significant weight reduction of the already optimized design by over 16kg.
Journal Article

An Investigation of the Effects of Cast Skin on the Mechanical Properties of an AM60 Die-Cast Magnesium Alloy

2015-04-14
2015-01-0510
Magnesium die-cast alloys are known to have a layered microstructure composed of: (1) An outer skin layer characterized by a refined microstructure that is relatively defect-free; and (2) A “core” (interior) layer with a coarser microstructure having a higher concentration of features such as porosity and externally solidified grains (ESGs). Because of the difference in microstructural features, it has been long suggested that removal of the surface layer by machining could result in reduced mechanical properties in tested tensile samples. To examine the influence of the skin layer on the mechanical properties, a series of round tensile bars of varying diameters were die-cast in a specially-designed mold using the AM60 Mg alloy. A select number of the samples were machined to different final diameters. Subsequently, all of the samples (as-cast as well as machined) were tested in tension.
Technical Paper

MMLV: Door Design and Component Testing

2015-04-14
2015-01-0409
The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-I vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine resulting in a significant environmental benefit and fuel reduction. This paper reviews the mass reduction and structural performance of aluminum, magnesium, and steel components for a lightweight multi material door design for a C/D segment passenger vehicle. Stiffness, durability, and crash requirements are assessed.
Technical Paper

CFD Investigation on the Influence of In-Cylinder Mixture Distribution from Multiple Pilot Injections on Cold Idle Behaviour of a Light Duty Diesel Engine

2014-10-13
2014-01-2708
Cold idle operation of a modern design light duty diesel engine and the effect of multiple pilot injections on stability were investigated. The investigation was initially carried out experimentally at 1000rpm and at −20°C. Benefits of mixture preparation were initially explored by a heat release analysis. Kiva 3v was then used to model the effect of multiple pilots on in-cylinder mixture distribution. A 60° sector of mesh was used taking advantage of rotational symmetry. The combustion system and injector arrangements mimic the HPCR diesel engine used in the experimental investigation. The CFD analysis covers evolutions from intake valve closing to start of combustion. The number of injections was varied from 1 to 4, but the total fuel injected was kept constant at 17mm3/stroke. Start of main injection timing was fixed at 7.5°BTDC.
Journal Article

Influence of Test Procedure on Friction Behavior and its Repeatability in Dynamometer Brake Performance Testing

2014-09-28
2014-01-2521
The efforts of the ISO “Test Variability Task Force” have been aimed at improving the understanding and at reducing brake dynamometer test variability during performance testing. In addition, dynamometer test results have been compared and correlated to vehicle testing. Even though there is already a vast amount of anecdotal evidence confirming the fact that different procedures generate different friction coefficients on the same brake corner, the availability of supporting data to the industry has been elusive up to this point. To overcome this issue, this paper focuses on assessing friction levels, friction coefficient sensitivity, and repeatability under ECE, GB, ISO, JASO, and SAE laboratory friction evaluation tests.
Journal Article

A Copula-Based Approach for Model Bias Characterization

2014-04-01
2014-01-0735
Available methodologies for model bias identification are mainly regression-based approaches, such as Gaussian process, Bayesian inference-based models and so on. Accuracy and efficiency of these methodologies may degrade for characterizing the model bias when more system inputs are considered in the prediction model due to the curse of dimensionality for regression-based approaches. This paper proposes a copula-based approach for model bias identification without suffering the curse of dimensionality. The main idea is to build general statistical relationships between the model bias and the model prediction including all system inputs using copulas so that possible model bias distributions can be effectively identified at any new design configurations of the system. Two engineering case studies whose dimensionalities range from medium to high will be employed to demonstrate the effectiveness of the copula-based approach.
Journal Article

Hot Stamping of a B-Pillar Outer from High Strength Aluminum Sheet AA7075

2014-04-01
2014-01-0981
This work demonstrates the feasibility of hot stamping a B-pillar outer panel from aluminum alloy 7075. AA7075 is characterized by a high strength to weight ratio with yield strengths comparable to those of DP and TRIP advanced high strength steels. Applications using AA7075 have typically been limited to the aerospace industry due to the high variable cost associated with forming and joining of these materials. A primary key to implementation in the automotive industry is the development of metal forming methods that produce non-compromised stamped parts at automotive manufacturing volumes and costs. This work explores the feasibility of die quenching a hot blank within a cold die as a means of delivering high strength aluminum sheet parts. A die made from kirksite was used to evaluate the hot stamping process for a B-pillar outer. After the forming/quenching operation, the parts were subjected to an artificial aging process to regain the properties of the T6-temper.
Technical Paper

Bench Level Automotive Electrical and Electromagnetic Compatibility Validation Test Process Improvements (Analysis of Survey Results from Test Laboratories)

2014-04-01
2014-01-0178
In an effort to reduce the cost and time associated with bench level automotive electrical and electromagnetic compatibility (EMC) validation tests, a survey was created to request advice from the test labs that perform this testing. The survey focuses particularly on the development of the test plan document and the preparation of the test setup. The survey was sent to a targeted group of individuals with experience in performing this type of testing. The invitees work at laboratories that represent the majority of labs in the world that are authorized to perform component electrical / EMC validation testing for automotive original equipment manufacturers (OEMs). There were a significant number of responses; it is possible that representatives from all of the invited laboratories responded. The survey results provide demographic information about the test labs and their participants.
Technical Paper

Clustering and Scaling of Naturalistic Forward Collision Warning Events Based on Expert Judgments

2014-04-01
2014-01-0160
The objectives of this study were a) to determine how expert judges categorized valid Integrated Vehicle-Based Safety Systems (IVBSS) Forward Collision Warning (FCW) events from review of naturalistic driving data; and b) to determine how consistent these categorizations were across the judges working in pairs. FCW event data were gathered from 108 drivers who drove instrumented vehicles for 6 weeks each. The data included video of the driver and road scene ahead, beside, and behind the vehicle; audio of the FCW alert onset; and engineering data such as speed and braking applications. Six automotive safety experts examined 197 ‘valid’ (i.e., conditions met design intent) FCW events and categorized each according to a taxonomy of primary contributing factors. Results indicated that of these valid FCW events, between 55% and 73% could be considered ‘nuisance alerts’ by the driver.
Technical Paper

On Modeling the Hot Stamping of High Strength Aluminum Sheet

2014-04-01
2014-01-0983
This paper documents the finite element (FE) analysis of a hot stamping process for high strength aluminum sheet. In this process a 7075 blank, heated above its solvus temperature, was simultaneously die quenched and stamped in a room temperature die to form a B-pillar outer reinforcement. Two modeling approaches have been investigated: an isothermal mechanical model and a non-isothermal coupled thermo-mechanical model. The accuracy of each approach was assessed by comparing the predicted strain and thickness distributions to experimental measurements from a formed panel. The coupled thermo-mechanical model provided the most accurate prediction.
Technical Paper

Experimental Evaluation of the Quench Rate of AA7075

2014-04-01
2014-01-0984
The aluminum alloy 7075-T6 has the potential to be used for structural automotive body components as an alternative to boron steel. Although this alloy shows poor formability at room temperature, it has been demonstrated that hot stamping is a feasible sheet metal process that can be used to overcome the forming issues. Hot stamping is an elevated temperature forming operation in which a hot blank is formed and quenched within a stamping die. Attaining a high quench rate is a critical step of the hot stamping process and corresponds to maximum strength and corrosion resistance. This work looks at measuring the quench rate of AA7075-T6 by way of three different approaches: water, a water-cooled plate, and a bead die. The water-cooled plate and the bead die are laboratory-scale experimental setups designed to replicate the hot stamping/die quenching process.
Technical Paper

Comparison of Water Strategy Tools for Automotive Manufacturing

2014-04-01
2014-01-1958
Tools are now publicly available that can potentially help a company assess the impact of its water use and risks in relation to their global operations and supply chains. In this paper we describe a comparative analysis of two publicly available tools, specifically the WWF/DEG Water Risk Filter and the WBCSD Global Water Tool that are used to measure the water impact and risk indicators for industrial facilities. By analyzing the risk assessments calculated by these tools for different scenarios that include varying facilities from different industries, one can better gauge the similarities and differences between these water strategy tools. Several scenarios were evaluated using the water tools, and the results are compared and contrasted. As will be shown, the results can vary significantly.
Technical Paper

Friction Stir Spot Welding of a High Ductility Aluminum Alloy

2014-04-01
2014-01-0793
High ductility cast aluminum alloys are seeing more use in vehicles as a greater effort is made to replace components made from heavier steel and iron alloys with lighter weight alloys such as aluminum. High ductility cast aluminum has significant advantages by allowing for complex shape and considerable consolidation of parts in body structures. However, joining can be a challenge because one popular method for aluminum joining, self-piercing riveting (SPR), requires a ductility of greater than 10%, forcing the common high ductility Al alloys to undergo a T6 heat treatment which adds cost and potential distortion issues to Al component. In this study, friction stir spot welding was investigated as a potential joining technique for this material in the as-cast condition. Samples of as-cast Aural-2™ alloy were joined to Aural-2™, 5754, and 6061 alloys, to determine the manufacturing feasibility, weld strength, and fatigue strength using this joining technique.
Technical Paper

Benefit of Structural Adhesives in Full Car Crash Applications

2014-04-01
2014-01-0811
Structural adhesives are widely used across the automotive industry for several reasons like scale-up of structural performance and enabling multi-material and lightweight designs. Development engineers know in general about the effects of adding adhesive to a spot-welded structure, but they want to quantify the benefit of adding adhesives on weight reduction or structural performance. A very efficient way is to do that by applying analytical tools. But, in most of the relevant non-linear load cases the classical lightweight theory can only help to get a basic understanding of the mechanics. For more complex load cases like full car crash simulations, the Finite Element Method (FEM) with explicit time integration is being applied to the vehicle development process. In order to understand the benefit of adding adhesives to a body structure upfront, new FEM simulation tools need to be established, which must be predictive and efficient.
Technical Paper

CAA Application to Automobile Wind Throb Prevention Design

2014-04-01
2014-01-0593
When a window opens to provide the occupant with fresh air flow while driving, wind throb problems may develop along with it. This work focuses on an analytical approach to address the wind throb issue for passenger vehicles when a front window or sunroof is open. The first case of this paper pertains to the front window throb issue for the current Ford Escape. Early in a program stage, CAA (Computational Aeroacoustics) analysis predicted that the wind throb level exceeded the program wind throb target. When a prototype vehicle became available, the wind tunnel test confirmed the much earlier analytical result. In an attempt to resolve this issue, the efforts focused on a design proposal to implement a wind spoiler on the side mirror sail, with the spoiler dimension only 6 millimeters in height. This work showed that the full vehicle CAA analysis could capture the impact of this tiny geometry variation on the wind throb level inside the vehicle cabin.
Technical Paper

A Mainstream Test Methodology for Developing a Vehicle Equipped with an Electronic Stability Control System

2014-04-01
2014-01-0130
There have been many articles published in the last decade or so concerning the components of an electronic stability control (ESC) system, as well as numerous statistical studies that attempt to predict the effectiveness of such systems relative to crash involvement. The literature however is free from papers that discuss how engineers might develop such systems in order to achieve desired steering, handling, and stability performance. This task is complicated by the fact that stability control systems are very complex and their designs and what they can do have changed considerably over the years. These systems also differ from manufacturer to manufacturer and from vehicle to vehicle in a given maker of automobiles. In terms of ESC hardware, differences can include all the components as well as the addition or absence of roll rate sensors or active steering gears to name a few.
Journal Article

Sampling-Based RBDO Using Score Function with Re-Weighting Scheme

2013-04-08
2013-01-0377
Sampling-based methods are general but time consuming for solving a Reliability-Based Design Optimization (RBDO) problem. In order to alleviate the computation burden, score function together with the Monte Carlo method was used to compute the stochastic sensitivities of reliability functions. In literature, re-weighting schemes were shown to converge faster than the regular Monte Carlo method. In this paper, a reweighting scheme together with score function is employed to perform sampling-based stochastic sensitivity analysis to improve the computational efficiency and accuracy. An analytical example is used to show the advantages of the proposed method. Comparisons to the conventional methods are made and discussed. Two RBDO problems are solved to demonstrate the use of the proposed method.
X