Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Detection of Presence and Posture of Vehicle Occupants Using a Capacitance Sensing Mat

2019-04-02
2019-01-1232
Capacitance sensing is the technology that detects the presence of nearby objects by measuring the change in capacitance. A change in capacitance is triggered either by a change in dielectric constant, area of overlap or distance of separation between the electrodes of the capacitor. It is a technology that finds wide use in applications such as touch screens, proximity sensing etc. Drawing motivation from such applications, this paper investigates how capacitive sensing can be employed to detect the presence and posture of occupants inside vehicles. Compared to existing solutions, the proposed approach is low-cost, easy to deploy and highly efficient. The sensing system consists of a capacitance-sensing mat that is embedded with copper foils and an associated sensing circuitry. Inside the mat the foils are arranged in rows and columns to form several touch-nodes across the surface of the mat.
Technical Paper

One piece hot formed AB ring reinforcement

2018-09-03
2018-36-0022
The usage of Boron steel in the South American automotive industry has been increasing in recent years. Considering its high hardening properties, sheet metal parts can only be manufactured using a hot forming process, as compared to a conventional cold forming process; however, the hot stamping process offers the advantage to stamp a part in a single die vs. multiple dies using a regular cold stamping process. The main objective is to present the advantages of constructing the whole AB ring reinforcement out of Boron steel and made out of a single die, and no welding among the A pillar reinforcement, B Pillar reinforcement and rocker panel. This type of design has helped to achieve crash safety performance goals, enhance the structural characteristics of joints, improve dimensional control, reduce the number of welds, manage BIW overall weight and improve torsion rigidity.
Technical Paper

Development of a Simulation Tool for High Capacity Metal Foam Heat Exchanger with Phase Change Material

2018-04-03
2018-01-0783
Metal foam with their high porosity and heat storage capacity can be combined with phase change materials to be a powerful heat storage device. Numerical simulations of metal foam behavior can be challenging due to their complex geometric patterns necessitating high mesh requirements. Furthermore, simulations of the inner workings of a metal foam heat exchanger comprising of a large number of individual metal foam canisters can be impossible. The objective of the current work is to develop a computational model using a proprietary CFD tool Simerics-MP/Simerics-MP+® to simulate the workings of a metal foam heat exchanger with phase change element. A heat transfer coefficient capturing this heat transfer between wax and metal is used to formulate the “simplified” mixture model. The versatility of the proposed model is in the universality of its application to any shape or structure of metal foam. The computational model developed is tested to replicate the results of the 3D simulation.
Technical Paper

Experimental Investigation on the Influence of Pressure Wheel Design on Heat Dissipation for a Laser Robotic End of Arm Tooling

2018-04-03
2018-01-1235
The initiative of this paper is focused on improving the heat dissipation from the pressure wheel of a laser welding assembly in order to achieve a longer period of use. The work examines the effects of different geometrical designs on the thermal performance of pressure wheel assembly during a period of cooling time. Three disc designs were manufactured for testing: Design 1 – a plain wheel, Design 2 – a pierced wheel, and Design 3 – a wheel with ventilating vanes. All of the wheels were made of carbon steel. The transient thermal reaction were compared. The experimental results indicate that the ventilated wheel cools down faster with the convection in the ventilated channels, while the solid plain wheel continues to possess higher temperatures. A comparison among the three different designs indicates that the Design 3 has the best cooling performance.
Technical Paper

Development of a Thermal Fatigue Test Bench for Cylinder Head Materials

2018-04-03
2018-01-1410
An innovative specimen design and test system for thermal fatigue (TF) analysis is developed to compare the fatigue behavior of different cylinder head materials under realistic cyclic thermal loadings. Finite element analyses were performed to optimize the specimen geometry and thermal cycles. The reduced section of the TF specimen is heated locally by a high frequency induction heater and cooled by compressed air. The mechanical strain is then induced internally by the non-uniform thermal gradient generated within the specimen to closely simulate what valve bridges in cylinder heads experience in real operation. The resulting fatigue life is a function not only of the inherent fatigue resistance of the alloys, but also of other relevant properties such as thermal conductivity, modulus of elasticity, and coefficient of thermal expansion. This test is an essential tool for comparing different alloys for thermal fatigue applications.
Technical Paper

Copper Effect on the Ultrasonic Fatigue Life of A356 Aluminum Alloy Under Variable Humidity Levels

2018-04-03
2018-01-1411
Ultrasonic fatigue tests (testing frequency around 20kHz) have been conducted on A356 aluminum alloys with different copper contents and AS7GU aluminum alloy. Tests were performed in dry air and submerged in water conditions. The effect of copper content was investigated and it was concluded that copper content plays an important role influencing the humidity effect on A356 aluminum alloy ultrasonic fatigue lives. Also, for the same copper content, copper in solute solution or in precipitate have different humidity sensitivities.
Journal Article

A New Catalyzed HC Trap Technology that Enhances the Conversion of Gasoline Fuel Cold-Start Emissions

2018-04-03
2018-01-0938
Passive in-line catalyzed hydrocarbon (HC) traps have been used by some manufacturers in the automotive industry to reduce regulated tailpipe (TP) emissions of non-methane organic gas (NMOG) during engine cold-start conditions. However, most NMOG molecules produced during gasoline combustion are only weakly adsorbed via physisorption onto the zeolites typically used in a HC trap. As a consequence, NMOG desorption occurs at low temperatures resulting in the use of very high platinum group metal (PGM) loadings in an effort to combust NMOG before it escapes from a HC trap. In the current study, a 2.0 L direct-injection (DI) Ford Focus running on gasoline fuel was evaluated with full useful life aftertreatment where the underbody converter was either a three-way catalyst (TWC) or a HC trap. A new HC trap technology developed by Ford and Umicore demonstrated reduced TP NMOG emissions of 50% over the TWC-only system without any increase in oxides of oxygen (NOx) emissions.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets Made with Different Processing Conditions

2018-04-03
2018-01-1237
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints without clearance hole and lap-shear specimens with stripped FDS joints with clearance hole were made and then tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints without clearance hole (with gap) and the stripped FDS joints with clearance hole under quasi-static and cyclic loading conditions. The fatigue failure mode of the FDS joints without clearance hole (with gap) in lap-shear specimens is similar to those with clearance hole. The fatigue lives of lap-shear specimens with FDS joints without clearance hole are lower than those with clearance hole for given load ranges under cyclic loading conditions.
Technical Paper

The Development of Low Temperature Three-Way Catalysts for High Efficiency Gasoline Engines of the Future: Part II

2018-04-03
2018-01-0939
It is anticipated that future gasoline engines will have improved mechanical efficiency and consequently lower exhaust temperatures at low load conditions, although the exhaust temperatures at high load conditions are expected to remain the same or even increase due to the increasing use of downsized turbocharged engines. In 2014, a collaborative project was initiated at Ford Motor Company, Oak Ridge National Lab, and the University of Michigan to develop three-way catalysts with improved performance at low temperatures while maintaining the durability of current TWCs. This project is funded by the U.S. Department of Energy and is intended to show progress toward the USDRIVE target of 90% conversion of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) at 150 °C after high mileage aging. The testing protocols specified by the USDRIVE ACEC team for stoichiometric S-GDI engines were utilized during the evaluation of experimental catalysts at all three facilities.
Technical Paper

New FR Lower Spring Pad Design to Avoid Squeak Noise During Suspension Travel

2017-11-07
2017-36-0238
During a B-Car durability validation route, it was observed a squeak noise coming from front suspension structure. In the teardown, it was verified metal to metal contact between coil spring and damper spring plate and squeeze-out of spring pad. To reproduce the vehicle failure, it was developed in laboratory a fixture and test to reflect a B-Car McPherson suspension motion, to reproduce the failure and validate a proposal. After root cause understanding, the challenge was to design a new spring pad to avoid squeeze-out keeping the coil spring lower pigtail unchanged. It was tested some prototype parts also in vehicle to approve the design proposal.
Technical Paper

Deconstruction of UN38.3 into a Process Flowchart

2017-03-28
2017-01-1208
This paper will discuss a compliance demonstration methodology for UN38.3, an international regulation which includes a series of tests that, when successfully met, ensure that lithium metal and lithium ion batteries can be safely transported. Many battery safety regulations, such as FMVSS and ECE, include post-crash criteria that are clearly defined. UN38.3 is unique in that the severity of the tests drove changes to battery design and function. Another unique aspect of UN38.3 is that the regulatory language can lead to different interpretations on how to run the tests and apply pass/fail criteria; there is enough ambiguity that the tests could be run very differently yet all meet the actual wording of the regulation. A process was created detailing exactly how to run the tests to improve consistency among test engineers. As part of this exercise, several tools were created which assist in generating a test plan that complies with the UN38.3 regulation.
Technical Paper

Paint Bake Influence on AA7075 and AA7085

2017-03-28
2017-01-1265
The typical paint bake cycle includes multiple ramps and dwells of temperature through e-coat, paint, and clear coat with exposure equivalent to approximately 190°C for up to 60 minutes. 7xxx-series aluminum alloys are heat treatable, additional thermal exposure such as a paint bake cycle could alter the material properties. Therefore, this study investigates the response of three 7xxx-series aluminum alloys with respect to conductivity, hardness, and yield strength when exposed to three oven curing cycles of a typical automotive paint operation. The results have indicated that alloy composition and artificial aging practice influence the material response to the various paint bake cycles.
Technical Paper

A Modeling Analysis of Fibrous Media for Gasoline Particulate Filters

2017-03-28
2017-01-0967
With an emerging need for gasoline particulate filters (GPFs) to lower particle emissions from gasoline direct injection (GDI) engines, studies are being conducted to optimize GPF designs in order to balance filtration efficiency, backpressure penalty, filter size, cost and other factors. Metal fiber filters could offer additional designs to the GPF portfolio, which is currently dominated by ceramic wall-flow filters. However, knowledge on their performance as GPFs is still limited. In this study, modeling on backpressure and filtration efficiency of fibrous media was carried out to determine the basic design criteria (filtration area, filter thickness and size) for different target efficiencies and backpressures at given gas flow conditions. Filter media with different fiber sizes (8 - 17 μm) and porosities (80% - 95%) were evaluated using modeling to determine the influence of fiber size and porosity.
Technical Paper

Evolution of Engine Air Induction System Hydrocarbon Traps

2017-03-28
2017-01-1014
Engine air induction systems hydrocarbon trap (HC trap) designs to limit evaporative fuel emissions, have evolved over time. This paper discusses a range of HC traps that have evolved in engine air induction systems. (AIS) The early zeolite flow through HC trap utilized an exhaust catalyst technology internal stainless steel furnace brazed substrate coated with zeolite media. This HC trap was installed in the AIS clean air tube. This design was heavy, complicated, and expensive but met the urgency of the implementation of the new evaporative emissions regulation. The latest Ford Motor Company HC trap is a simple plastic tray containing activated carbon with breathable non-woven polyester cover. This design has been made common across multiple vehicle lines with planned production annual volume in the millions. The cost of the latest HC trap bypass design is approximately 5% of the original stainless steel zeolite flow through HC trap.
Technical Paper

Wear of D2 Tool Steel Dies during Trimming DP980-type Advanced High Strength Steel (AHSS) for Automotive Parts

2017-03-28
2017-01-1706
Automobile body panels made from advanced high strength steel (AHSS) provide high strength-to-mass ratio and thus AHSS are important for automotive light-weighting strategy. However, in order to increase their use, the significant wear damage that AHSS sheets cause to the trim dies should be reduced. The wear of dies has undesirable consequences including deterioration of trimmed parts' edges. In this research, die wear measurement techniques that consisted of white-light optical interferometry methods supported by large depth-of-field optical microscopy were developed. 1.4 mm-thick DP980-type AHSS sheets were trimmed using dies made from AISI D2 steel. A clearance of 10% of the thickness of the sheets was maintained between the upper and lower dies. The wear of the upper and lower dies was evaluated and material abrasion and chipping were identified as the main damage features at the trim edges.
Technical Paper

Full Scale Burn Test of Four Aluminum Body Ford F-150’s

2017-03-28
2017-01-1355
Four full scale burn tests on aluminum body Ford F-150’s were conducted with four unique origins. The purpose of these burn tests was to determine if the origin of the fire could be accurately identified after the vehicle fires progressed to near complete burn (with near absence of the aluminum body panels). The points of origin for the four burn tests were: 1) Engine Compartment - driver’s side front of engine compartment, 2) Passenger Compartment - Instrument panel, driver’s side near the headlamp switch, 3) Passenger Compartment - passenger side rear seat, 4) Outside of Vehicle - passenger side front tire. Photographic, video, and temperature data was recorded to document the burn process from initiation to extinguishment. Post-fire analysis was conducted in an attempt to determine the origin of the fire based solely on the burn damage.
Technical Paper

Improving Multi-Voltage Electrical System Performance with Smart Step-Down Converters

2017-03-28
2017-01-1668
The demand for more features in a vehicle is growing at an extraordinary rate. This trend especially with emerging autonomous functions shows no sign of slowing. The energy requires to supply this ever growing system goes through multiple conversion, protection and other elements before it actually powers the loads. Considering the loss of each of these elements for a vehicle and multiplying the value by the total numbers of cars, underlines the need for an optimized electrical distribution system to power all loads efficiently. In this paper, Smart Step-Down Convertor is introduced as a power supply to power devices which operate at voltages below the power net voltage while protecting the power net and the devices against faults.
Technical Paper

Multisensory Contributions to Perceived Quality and Authenticity of Materials for the Vehicle Interior

2017-03-28
2017-01-0494
Material authenticity is an important factor for appearance and perceived quality of the vehicle interior. The term authenticity implies ambivalence: For the product designer, it means identification and trueness of the origin of the material. The customers, however, can only access information on the nature of the materials via their own perception of surface features. Thus, the intended authenticity of a material always needs to be conveyed by its surface. Specific cases illustrate the context: 1. The customer touches a part of known matter, but various layers prevent from directly touching the natural material: e.g. leather at the steering wheel, applications of wood. 2. Perception of a thin surface layer indicates authentic material, which is not fulfilled by the whole part: e.g. plastic parts plated with metal. 3. A part consists of authentic material, but newly composed, so that it is not easily identified, such as recycled materials, e.g. leather fiber layers for seats.
Technical Paper

A Method of Evaluating the Joint Effectiveness on Contribution to Global Stiffness and NVH Performance of Vehicles

2017-03-28
2017-01-0376
While Advanced High Strength Steels (AHSS) and the next generation AHSS grades offer improved crash safety and reduced weight for vehicles, the global stiffness and NVH performance are often compromised due to reduced material thickness. This paper discusses an advanced method of evaluating the joint effectiveness on contribution to global stiffness and NVH performance of vehicles. A stiffness contribution ratio is proposed initiatively in this research, which evaluates the current contribution of the joints to the global stiffness and NVH performance of vehicles. Another parameter, joint effectiveness factor, has been used to study the potential of each joint on enhancing the global stiffness. The critical joints to enhance the vehicle stiffness and NVH performance can be identified based on above two parameters, and design changes be made to those critical joints to improve the vehicle performance.
Technical Paper

A Comparative Study of Two RVE Modelling Methods for Chopped Carbon Fiber SMC

2017-03-28
2017-01-0224
To advance vehicle lightweighting, chopped carbon fiber sheet molding compound (SMC) is identified as a promising material to replace metals. However, there are no effective tools and methods to predict the mechanical property of the chopped carbon fiber SMC due to the high complexity in microstructure features and the anisotropic properties. In this paper, a Representative Volume Element (RVE) approach is used to model the SMC microstructure. Two modeling methods, the Voronoi diagram-based method and the chip packing method, are developed to populate the RVE. The elastic moduli of the RVE are calculated and the two methods are compared with experimental tensile test conduct using Digital Image Correlation (DIC). Furthermore, the advantages and shortcomings of these two methods are discussed in terms of the required input information and the convenience of use in the integrated processing-microstructure-property analysis.
X