Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Bumper Systems Designed for Both Pedestrian Protection and FMVSS Requirements: Part Design and Testing

2004-03-08
2004-01-1610
This paper describes a bumper system designed to meet the current FMVSS (Federal Motor Vehicle Safety Standard) and ECE42 legislation as well as the European Enhanced Vehicle Safety Committee (EEVC) requirements for lower leg pedestrian impact protection [1] (The EEVC was founded in 1970 in response to the US Department of Transportation's initiative for an international program on Experimental Safety Vehicles. The EEVC steering committee, consisting of representatives from several European Nations, initiates research work in a number of automotive working areas. These research tasks are carried out by a number of specialist Working Groups who operate for over a period of several years giving advice to the Steering Committee who then, in collaboration with other governmental bodies, recommends future courses of action designed to lead to improved safety in vehicles).
Technical Paper

Predictive Weathering Tool for Color Formula Development

2003-03-03
2003-01-0798
A model has been developed and implemented at GE Plastics that predicts a material's color shift when weathered. The material's color shift is due to the summation of color shifts from each individual component. By individually measuring the change in each component's optical coefficients upon weathering and using a multiple light scattering model, one can predict the color shift of a material composed of mixtures of these components. The model has been shown to have a standard deviation of 0.4 to 0.9 when predicting color shifts E*, for PC-polyester copolymers, ABS, and ABS/PC blends using an automotive exterior test, SAE J1885, ASTM D 4674, and ASTM D 4459.
Technical Paper

Engineering Thermoplastic Energy Absorber Solutions for Pedestrian Impact

2002-03-04
2002-01-1225
This paper will describe an approach to satisfying proposed European Enhanced Vehicle Safety Committee (EEVC) legislation for lower leg pedestrian impact. The solution for lower leg protection is achieved through a combination of material properties and design. Using Computer Aided Engineering (CAE) modeling, the performance of an energy absorber (EA) concept was analyzed for knee bending angle, knee shear displacement, and tibia acceleration. The modeling approach presented here includes a sensitivity analysis to first identify key material and geometric parameters, followed by an optimization process to create a functional design. Results demonstrate how an EA system designed with a polycarbonate/polybutyelene terephthalate (PC/PBT) resin blend, as illustrated in Figure 1, can meet proposed pedestrian safety requirements.
Technical Paper

Moldfilling Analyses: When to Use Them, What They Tell You

1999-03-01
1999-01-0279
Engineering thermoplastics are increasingly being used in automotive applications; many of whose designs are very complex and can pose unique challenges in manufacturing. To help products reach market faster, with better quality and lower cost, use of predictive engineering methods is becoming increasingly common. The purpose of this paper is to review a specific predictive tool: moldfilling analysis. This paper will outline the technology, what is required to use it properly, what issues the technology is capable of addressing, and what other tools are available for addressing advanced issues.
Technical Paper

Safety Related Testing and Results of Polycarbonate and Tempered Glass Non-Windshield Glazing Applications

1998-02-23
980863
This paper presents results from a series of tests that address safety related issues concerning vehicle glazing. These issues include occupant containment, head impact injury, neck injuries, fracture modes, and laceration. Component-level and full vehicle crash tests of standard and polycarbonate non-windshield glazing were conducted. The tests were conducted as part of a study to demonstrate that there is no decrease in the safety benefits offered by polycarbonate glazing when compared to current glazing. Readers of this paper will gain a broader understanding of the tests that are typically conducted for glazing evaluation from a safety perspective, as well as gain insight into the meaning of the results.
Technical Paper

Correlation of Finite-Element Analysis to Free-Motion Head-Form Testing for FMVSS 201U Impact Legislation

1997-02-24
970163
Automotive engineers and designers are working to develop pillar-trim concepts that will comply with the upper interior head-impact legislation, FMVSS 201U. However, initial development cycles have been long and repetitive. A typical program consists of concept development, tool fabrication, prototype molding, and impact testing. Test results invariably lead to tool revisions, followed by further prototypes, and still more impact testing. The cycle is repeated until satisfactory parts are developed - a process which is long (sometimes in excess of 1 year) and extremely labor intensive (and therefore expensive). Fortunately, the use of finite-element analysis (FEA) can greatly reduce the concept-to-validation time by incorporating much of the prototype and impact evaluations into computer simulations. This paper describes both the correlation and validation of an FEA-based program to physical free-motion head-form testing and the predictive value of this work.
Technical Paper

Rationalizing Gas-Assist Injection Molding Processing Conditions

1995-02-01
950562
Gas-assist injection molding is a relatively new process. It is an extension of conventional injection molding and allows molders to make larger parts having projected areas or cross sectional geometries not previously possible using existing equipment. However, controlling the injection of the gas has been a concern. The plastics industry is attempting to establish logical techniques to set up and rationalize processing conditions for the method. Although gas injection equipment permits a number of adjustments, an optimum processing window must be established to provide control and repeatability of the process to mold consistent, acceptable parts. This paper describes a strategy and equipment for rationalizing and accurately controlling gas injection processing conditions that are applicable regardless of the type of molding machine or processing license a molder is using.
Technical Paper

Estimation of Lateral Rail Loads Incurred During Pendulum Impacts

1993-03-01
930536
A technique for estimating the lateral loads exerted on the vehicle frame during centerline pendulum impacts has been developed. These loads can either be determined by sophisticated hand calculations or by using beam finite-element analysis. The loads can either be determined as a fraction of the peak impact load, or as an absolute number. The dependence of the lateral load on frame stiffness, bumper cross-section, and bumper sweep will be shown to be quite dramatic.
Technical Paper

Failure Analysis of Terminal Pullout in Automotive Connectors

1991-02-01
910880
The high costs of prototyping, revisions, and production tooling, with a higher emphasis on quality, concurrent with demands for miniaturization, higher-density packaging, stricter performance, and a shortened product development cycle, have led to the development of advanced analysis techniques that address the performance issues associated with failure prevention in automotive connectors. Because of the complex material and geometric nonlinearity demands in performance, traditional calculations are inadequate, and new methods, utilizing finite element analysis techniques were developed. These highly specialized analysis techniques will enable the designer and engineer to predict connector performance with a high degree of confidence. Concurrent with concept designs, structural analyses (in the areas of assembly, disassembly, and terminal retention) must be done prior to design release.
Technical Paper

Structural Analysis of Snap-Finger Performance in Automotive Connectors

1990-02-01
900078
The increased demands of today's complex automotive connector designs have led to the development of engineering structural analysis tools which address the performance issues of the connector's snap-finger. In designs where hand calculations were once considered the norm in evaluating snap-finger performance, the analysis tools have evolved into the use of finite element techniques which address the high nonlinearity issues of snap-finger disassembly and terminal pull out strength. The structural analysis approaches developed investigate the connector snap-finger performance in reinforced engineering thermoplastics while incorporating the effects of geometric and material nonlinearity in the results. The techniques developed allow for the evaluation of snap-finger performance of prospective connector designs before expensive tooling and prototyping is initiated, providing the benefits of limited tool rework and decreased product development time.
X