Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Study of Friction Optimization Potential for Lubrication Circuits of Light-Duty Diesel Engines

2019-09-09
2019-24-0056
Over the last two decades, engine research has been mainly focused on reducing fuel consumption in view of compliance with stringent homologation targets and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystems has been one of the most important topics of modern Diesel engine development. In particular, the present paper analyzes the lubrication circuit potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of oil circuit design, oil viscosity characteristics (including new ultra-low formulations) and thermal management. For this purpose, a combination of theoretical and experimental tools were used.
Technical Paper

Vibro-Acoustic Analysis for Modeling Propeller Shaft Liner Material

2019-06-05
2019-01-1560
In recent truck applications, single-piece large-diameter propshafts, in lieu of two-piece propshafts, have become more prevalent to reduce cost and mass. These large-diameter props, however, amplify driveline radiated noise. The challenge presented is to optimize prop shaft modal tuning to achieve acceptable radiated noise levels. Historically, CAE methods and capabilities have not been able to accurately predict propshaft airborne noise making it impossible to cascade subsystem noise requirements needed to achieve desired vehicle level performance. As a result, late and costly changes can be needed to make a given vehicle commercially acceptable for N&V performance prior to launch. This paper will cover the development of a two-step CAE method to predict modal characteristics and airborne noise sensitivities of large-diameter single piece aluminum propshafts fitted with different liner treatments.
Technical Paper

Experimental Study of Acoustic and Thermal Performance of Sound Absorbers with Microperforated Aluminum Foil

2019-06-05
2019-01-1580
Aluminum foil applied to the surface of sound absorbing materials has broad application in the automotive industry. A foil layer offers thermal insulation for components close to exhaust pipes, turbo chargers, and other heat sources in the engine compartment and underbody. It can also add physical protection for acoustic parts in water-splash or stone-impingement areas of the vehicle exterior. It is known that adding impermeable plain foil will impact the sound absorption negatively, so Microperforated Aluminum Foil (MPAF) is widely used to counteract this effect. Acoustic characteristics of MPAF can be modeled analytically, but deviation of perforation size and shape, variation of hole density, material compression, and adhesive applied to the back of the foil for the molding process can impact the acoustic and thermal insulation performance.
Technical Paper

Fatigue Tests of Un-Notched and Notched Specimens and Life Prediction Using a Variable Critical Distance Method

2019-04-02
2019-01-0801
Fatigue is one of the most common failure mechanism in engineering structures. The statistical nature of fatigue life and the stress gradient are the two challenges among many while designing any component or structure for fatigue. Fatigue lives of the identical components exhibit the considerable variation under the same loading and operating conditions due to the difference in the material micro-structures and other uncontrolled parameters. Stress concentration at the notch causes stress gradient and therefore, applying the plane specimen results for actual engineering components with notches does not give quantitatively reliable results if the stress gradient effects are not considered. The objective of the work presented here was to carry out the fatigue tests of un-notched, U and V-notch specimens which were die cast using aluminum alloy (A380) and to obtain fatigue life using a variable critical distance method which considers the stress gradient due to the notch geometry.
Technical Paper

Multi-Material Topology Optimization: A Practical Method for Efficient Material Selection and Design

2019-04-02
2019-01-0809
As conventional vehicle design is adjusted to suit the needs of all-electric, hybrid, and fuel-cell powered vehicles, designers are seeking new methods to improve system-level design and enhance structural efficiency; here, multi-material optimization is suggested as the leading method for developing these novel architectures. Currently, diverse materials such as composites, high strength steels, aluminum and magnesium are all considered candidates for advanced chassis and body structures. By utilizing various combinations and material arrangements, the application of multi-material design has helped designers achieve lightweighting targets while maintaining structural performance requirements. Unlike manual approaches, the multi-material topology optimization (MMTO) methodology and computational tool described in this paper demonstrates a practical approach to obtaining the optimum material selection and distribution of materials within a complex automotive structure.
Technical Paper

Aerodynamically Induced Loads on Hood Latch and Hood Retention Systems

2019-04-02
2019-01-0657
Hood latches are provided with a secondary latch mechanism in order to restrain hoods in the event of an incomplete closing operation. It is important thus to understand the aerodynamically induced loading conditions the latch and hood will be subject to in order to design the hood and hood retention system to withstand those loads. In this paper a method of collecting load and displacement data from actual vehicles is presented, as well as an analysis of the results and the implications for hood and latch design.
Technical Paper

Planetary Carrier Staking Groove Optimization

2019-01-09
2019-26-0239
Simple planetary gears are widely used in automobile industry due to their compact design and high power density. A simple planetary gear set consists of a Sun gear, Ring gear, Planets and Carrier which houses planet gears. Mounting of planet pinions on carrier is through pins which is supported on needle roller bearings. A process called staking is used to assemble the pinion pins on to the carrier. Pinion pins have a staking region which after assembly expands outward into staking groove on the carrier to prevent axial movement of the pins. Design of the groove plays a vital role for the fixation of planet pins and robustness a carrier. Planetary carrier staking grooves are designed to meet pinion pin retention and strength targets.
Technical Paper

Parametric Optimization of Planetary Carrier for Durability

2019-01-09
2019-26-0049
Planetary gear set is one of the most commonly used gear systems in automotive industry as they cater to high power density requirements. A simple planetary gear set consists of a sun gear, ring gear, planets and carrier which houses planet gears. Efficiency of a transmission is dependent upon performance of gear sets involved in power transfer to a great extent. Structural rigidity of a planetary carrier is critical in a planetary gear set as its deflection may alter the load distribution of gears in mesh causing durability and noise issues. Limited studies exist based on geometrical parameters of a carrier which would help a designer in selecting the dimensions at an early stage. In this study, an end to end automated FEA process based on DOE and optimization in Isight is developed. The method incorporates a workflow allowing for an update of carrier geometry, FE model setup, analysis job submission and post-processing of results.
Technical Paper

Alternate Solution for EV Charge Point Infrastructure in Crowded Urban Areas along the Shore

2019-01-09
2019-26-0121
Many countries including India have aggressively aimed to implement electric vehicles (EVs) usage from 2030 onwards. Companies such as General Motors, Uber, Waymo and Nissan etc. are exploring the realm of autonomous vehicles (AV) for use as taxis as early as 2019. Above facts logically arrive at the solution of Autonomous EVs as taxis. With the commitment towards enabling an all-electric future, there exists a need to provide suitable infrastructure for recharging. Major urban cities located by the shoreline such as New York, Hong Kong, Mumbai, Los Angeles etc. have been facing the space crunch, with real estate prices sky-rocketing exponentially. With this premise, the operating company would need a large amount of space to store their EVs for charging which attributes to a longer downtime. This brings a need for an economical charging location that has a reduced usage of urban infrastructure and energy consumption.
Technical Paper

Mechanism Analysis and Simulation Study of Automobile Millimeter Wave Radar Noise

2018-08-07
2018-01-1641
The paper analyzes the mechanism of automobile millimeter wave radar noise, this paper does not study radar noise from the angle of signal processing, but from the level of false detection and missed detection, at the same time, the noise mechanism is modeled and verified. Firstly, the purpose and significance of the research of radar vehicle noise are described, and then, we summarize and outline the macro phenomenon and the specific characteristics of the automobile millimeter wave radar noise.
Technical Paper

Trajectory-Tracking Control for Autonomous Driving Considering Its Stability with ESP

2018-08-07
2018-01-1639
With rapid increase of vehicles on the road, safety concerns have become increasingly prominent. Since the leading cause of many traffic accidents is known to be by human drivers, developing autonomous vehicles is considered to be an effective approach to solve the problems above. Although trajectory tracking plays one of the most important roles on autonomous driving, handling the coupling between trajectory-tracking control and ESP under certain driving scenarios remains to be challenging. This paper focuses on trajectory-tracking control considering the role of ESP. A vehicle model is developed with two degrees of freedom, including vehicle lateral, and yaw motions. Based on the proposed model, the vehicle trajectory is separated into both longitudinal and lateral motion. The coupling effect of the vehicle and ESP is analyzed in the paper. The lateral trajectory-tracking algorithm is developed based on the preview follower theory.
Technical Paper

Structural and Cost Evaluation of Snap Fits used in Connections of Vehicle Door Trim Panel Components with FEA Assist

2017-11-07
2017-36-0195
Among the most important finishing structures of a vehicle interior, the door trim panels reduce external noises, present ergonomic concepts generating comfort, improve appearance, and provide objects storage, knobs and buttons. The panels usually composed of several molded parts (trim, armrest, etc.) connected to each other also have structural function as support closing loads, protect occupants of door internal mechanisms, energy absorption in side impacts and resist misuse conditions. Therefore, these trims usually made of polymeric materials must to present good structural integrity, demanding appropriate connections between components to have good load distribution. The connections between parts can be made using bolts, interference fits (like self-locking), welding tubular plastic towers (heat stakes), or clips (such as snap fits) and last two are the most common due to be cheap and with good retention.
Journal Article

Functional Requirements to Exceed the 100 kW/l Milestone for High Power Density Automotive Diesel Engines

2017-09-04
2017-24-0072
The paper describes the challenges and results achieved in developing a new high-speed Diesel combustion system capable of exceeding the imaginative threshold of 100 kW/l. High-performance, state-of-art prototype components from automotive diesel technology were provided in order to set-up a single-cylinder research engine demonstrator. Key design parameters were identified in terms boost, engine speed, fuel injection pressure and injector nozzle flow rates. In this regard, an advanced piezo injection system capable of 3000 bar of maximum injection pressure was selected, coupled to a robust base engine featuring ω-shaped combustion bowl and low swirl intake ports. The matching among the above-described elements has been thoroughly examined and experimentally parameterized.
Technical Paper

Noise and Vibration Measurement Methods for Large Diameter Single-Piece Aluminum Propeller Shafts

2017-06-05
2017-01-1775
This paper describes recently developed test methods and instrumentation to address the specific noise and vibration measurement challenges posed by large-diameter single-piece tubular aluminum propeller (prop) shafts with high modal density. The prop shaft application described in this paper is a light duty truck, although the methods described are applicable to any rotating shaft with similar dynamic properties. To provide a practical example of the newly developed methods and instrumentation, impact FRF data were acquired in-situ for two typical prop shafts of significantly different diameter, in both rotating and stationary conditions. The example data exhibit features that are uniquely characteristic of large diameter single-piece tubular shafts with high modal density, including the particular effect of shaft rotation on the measurements.
Technical Paper

Powertrain Mounting Robust Evaluation Methodology Utilizing Minimal Hardware Resources

2017-06-05
2017-01-1823
Powertrain mounting systems design and development involves creating and optimizing a solution using specific mount rates and evaluation over multiple operating conditions. These mount rates become the recommended “nominal” rates in the specifications. The powertrain mounts typically contain natural materials. These properties have variation, resulting in a tolerance around the nominal specification and lead to differences in noise and vibration performance. A powertrain mounting system that is robust to this variation is desired. The design and development process requires evaluation of these mounts, within tolerance, to ensure that the noise and vibration performance is consistently met. During the hardware development of the powertrain mounting system, a library of mounts that include the range of production variation is studied. However, this is time consuming.
Technical Paper

Un-Controlled Generation Modelling and Analysis for Hybrid Vehicles

2017-01-10
2017-26-0108
Interior permanent magnet machines are being widely used in hybrid vehicles owing to their compact size and high power density. Vehicle level application requires the motor to operate at high speed beyond the base speed of the motor. This is accomplished through flux weakening control. Nonfunctioning of inverter switches and/or gate driver circuit during flux weakening could give rise to a potential fault scenario called Un-Controlled Generation (UCG). This paper gives a detailed background of UCG and its impact on the high voltage and propulsion systems. In further sections the details related to modelling and analysis of UCG will be discussed. Finally, the paper will conclude with simulation results and comparison of the results with motor dynamometer test data.
Technical Paper

Enhancing Mechanical Properties of Ductile Cast Iron Conrods through Different Heat Treatments

2016-10-25
2016-36-0360
The Austempering heat treatment is a well-known solution to improve the mechanical properties of ductile cast irons, therefore being referred as 'ADI' (Austempered Ductile Iron). The improved mechanical properties of ADI's with respect to conventional ductile iron is attributed to its resulting microstructure, which contains mainly carbide-free bainite with stabilized retained austenite. More recently, ductile cast irons were submitted to another heat treatment, known as 'Quenching and Partitioning' (Q&P). In this case, the ductile cast iron is austenitized, quenched to a temperature between Mf and Ms temperatures and subsequently heated to a temperature above Ms in order to partition the carbon from the martensite to the remaining austenite. The resulting microstructure comprises mainly low carbon martensite, austenite (stabilized by the carbon partition) and carbide-free bainite. Such microstructure resulted in equal or better properties than ADI.
Technical Paper

Application of CAEBAT System Approach for a Liquid-Cooled Automotive Battery Pack

2016-04-05
2016-01-1205
As one of many pack-level battery simulation approaches developed within the General Motors-led Computer-Aided Engineering of Automotive Batteries (CAEBAT) Phase 1 project, the system approach treats the entire battery pack as a dynamic system which includes multiple engineering disciplines for simulation. It is the most efficient approach of all the CAEBAT battery pack-level approaches in terms of computational time and resources. This paper reports the application of the system approach for a 24-cell liquid-cooled prototype battery pack. It also summarizes the verification of the approach by comparing the simulation results with the measurement data. The results using the system approach are found to have a very good agreement with the measurements.
Journal Article

Vehicle-Level EMC Modeling for HEV/EV Applications

2015-04-14
2015-01-0194
Electromagnetic compatibility (EMC) is becoming more important in power converters and motor drives as seen in hybrid electric vehicles (HEV) to achieve higher reliability of the vehicle and its components. Electromagnetic interference (EMI) of the electronic components for a vehicle are evaluated and validated at a component-level test bench; however, it is sometimes observed that the EMI level of the components can be changed in a vehicle-level test due to differences in the vehicle's configuration (cable routing, connecting location etc.). In this presentation, a vehicle-level EMC simulation methodology is introduced to estimate radiated emissions from a vehicle. The comparison between the simulation and measurement results is also presented and discussed.
Journal Article

The Next Generation “Voltec” Extended Range EV Propulsion System

2015-04-14
2015-01-1152
The Chevrolet Volt is an electric vehicle (EV) with extended-range (ER) that is capable of operation on battery power alone, and on power generated by an on-board gasoline engine after depletion of the battery charge. For 2016, GM has developed the next generation of the Volt vehicle and “Voltec” propulsion system. Building on the experience of the first generation Volt, the second generation targeted improved all-electric range, improved charge sustaining fuel economy, and improved performance. All of this was to be accomplished while maintaining the EV character of the first generation Volt which customers clearly valued. This paper describes the next generation “Voltec” system and the realized improvements in efficiency and performance. The features of the propulsion system components, including energy storage, transaxle, electric motors and power electronics, on-board charging, and engine are described and compared with the previous generation.
X