Refine Your Search


Search Results

Viewing 1 to 12 of 12
Technical Paper

Fatigue Tests of Un-Notched and Notched Specimens and Life Prediction Using a Variable Critical Distance Method

Fatigue is one of the most common failure mechanism in engineering structures. The statistical nature of fatigue life and the stress gradient are the two challenges among many while designing any component or structure for fatigue. Fatigue lives of the identical components exhibit the considerable variation under the same loading and operating conditions due to the difference in the material micro-structures and other uncontrolled parameters. Stress concentration at the notch causes stress gradient and therefore, applying the plane specimen results for actual engineering components with notches does not give quantitatively reliable results if the stress gradient effects are not considered. The objective of the work presented here was to carry out the fatigue tests of un-notched, U and V-notch specimens which were die cast using aluminum alloy (A380) and to obtain fatigue life using a variable critical distance method which considers the stress gradient due to the notch geometry.
Technical Paper

Multi-Material Topology Optimization for Crashworthiness Using Hybrid Cellular Automata

Structures with multiple materials have now become one of the perceived necessities for automotive industry to address vehicle design requirements such as light-weight, safety, and cost. The objective of this study is to develop a design methodology for multi-material structures accountable for vehicle crash durability. The heuristic topology synthesis approach of Hybrid Cellular Automaton (HCA) framework is implemented to generate multi-material structures with the constraint on the volume fraction of the final design. The HCA framework is integrated with ordered-SIMP (solid isotropic material with penalization) interpolation, artificial material library, as well as statistical analysis of material distribution data to ensure a smooth transition between multiple practical materials during the topology synthesis.
Journal Article

Integration of Component Design Data for Automotive Turbocharger with Vehicle Fault Model Using JA6268 Methodology

Suppliers and integrators are working with SAE’s HM-1 standards team to develop a mechanism to allow “Health Ready Components” to be integrated into larger systems to enable broader IVHM functionality (reference SAE JA6268). This paper will discuss how the design data provided by the supplier of a component/subsystem can be integrated into a vehicle reference model with emphasis on how each aspect of the model is transmitted to minimize ambiguity. The intent is to enhance support for the analytics, diagnostics and prognostics for the embedded component. In addition, we describe functionality being delegated to other system components and that provided by the supplier via syndicated web services. As a specific example, the paper will describe the JA6268 data submittal for a typical automotive turbocharger and other engine air system components to clarify the data modeling and integration processes.
Technical Paper

Enhancing Mechanical Properties of Ductile Cast Iron Conrods through Different Heat Treatments

The Austempering heat treatment is a well-known solution to improve the mechanical properties of ductile cast irons, therefore being referred as 'ADI' (Austempered Ductile Iron). The improved mechanical properties of ADI's with respect to conventional ductile iron is attributed to its resulting microstructure, which contains mainly carbide-free bainite with stabilized retained austenite. More recently, ductile cast irons were submitted to another heat treatment, known as 'Quenching and Partitioning' (Q&P). In this case, the ductile cast iron is austenitized, quenched to a temperature between Mf and Ms temperatures and subsequently heated to a temperature above Ms in order to partition the carbon from the martensite to the remaining austenite. The resulting microstructure comprises mainly low carbon martensite, austenite (stabilized by the carbon partition) and carbide-free bainite. Such microstructure resulted in equal or better properties than ADI.
Journal Article

Methods and Tools for Calculating the Flexibility of Automotive HW/SW Architectures

To cope with the increasing number of advanced features (e.g., smart-phone integration and side-blind zone alert.) being deployed in vehicles, automotive manufacturers are designing flexible hardware architectures which can accommodate increasing feature content with as fewer as possible hardware changes so as to keep future costs down. In this paper, we propose a formal and quantitative definition of flexibility, a related methodology and a tool flow aimed at maximizing the flexibility of an automotive hardware architecture with respect to the features that are of greater importance to the designer. We define flexibility as the ability of an architecture to accommodate future changes in features with no changes in hardware (no addition/replacement of processors, buses, or memories). We utilize an optimization framework based on mixed integer linear programming (MILP) which computes the flexibility of the architecture while guaranteeing performance and safety requirements.
Technical Paper

The Modified Martempering and its Effect on the Impact Toughness of a Cold Work Tool Steel

The so-called Modified Martempering discussed in this work differs from the standard martempering by that the temperature of the quenching bath is below the Ms point. In spite of the fact the lower temperature increases the severity of quenching, this also usually avoids the bainite formation, and by this reason, it is possible to make a fair comparison between different processes, which result in different microstructures. The present study shows the results in terms of mechanical properties, impact resistance in special of a cold work tool steel class, after being heat treated by the isothermal modified martempering process, as well as a comparison with the conventional quenching and tempering process and the austempering as well.
Technical Paper

Innovation Flow and Metrics Essentials

The innovation term has been so widely misused that the confusion observed among the companies trying to get themselves into the innovation realm is a common and natural consequence. The lack of understanding of the innovation dynamics, flow and metrics generally culminate in a non-well-thought implementation of innovation processes and policies that are usually tragic in the short term. The most common consequences are the loss of credibility of the innovation process in general among leaders and employees, and the loss of credibility of the company as an innovative company among suppliers, partners and customers, causing these companies to abandon this powerful tool and, as consequence, to limit their capabilities to compete in the future. In order to prevent this from happening, companies that were not built upon innovation will need to grow capability and change cultural priorities to match the demands of the innovation process.
Technical Paper

Simulating Complex Automotive Assembly Tasks using the HUMOSIM Framework

Efficient methods for simulating operators performing part handling tasks in manufacturing plants are needed. The simulation of part handling motions is an important step towards the implementation of virtual manufacturing for the purpose of improving worker productivity and reducing injuries in the workplace. However, industrial assembly tasks are often complex and involve multiple interactions between workers and their environment. The purpose of this paper is to present a series of industrial simulations using the Human Motion Simulation Framework developed at the University of Michigan. Three automotive assembly operations spanning scenarios, such as small and large parts, tool use, walking, re-grasping, reaching inside a vehicle, etc. were selected.
Technical Paper

Magnesium Powertrain Mount Brackets: New Application of Material Being used in this Sub-System for Vehicle Mass Reduction

The need for fuel economy gains is crucial in todays automotive market. There is also growing interest and knowledge of greenhouse gases and their effect on the environment. Paulstra's magnesium powertrain brackets were a solution that was presented not just to reduce the weight of the engine mounting system (which was already under its weight target before magnesium introduction), but in response of the OEM's desire to further reduce the weight of the vehicle for CAFE and weight class impact. This new engine mounting system has three powertrain mount brackets that are high-pressure die cast AZ91D magnesium alloy. This paper will show that these brackets to have a dramatic weight reduction compared to the standard aluminum die-cast material that they replaced. This paper describes the process of approval: concept and material sign-off by the OEM, FEA for strength and modal performance, corrosion, and the final product.
Technical Paper

Springback Prediction Using Combined Hardening Model

The main objective of this paper is to simulate the springback using combined kinematic/isotropic hardening model. Material parameters in the hardening model are identified by an inverse method. Three-point bending test is conducted on 6022-T4 aluminum sheet. Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves is generated with the material parameters found in this way, which can be used with other plastic models. ABAQUS/Standard 5.8, which has the combined isotropic/kinematic hardening model, is used to simulate draw-bend of 6022-T4 series aluminum sheet. Absolute springback angles are predicted very accurately.
Technical Paper

Posture and Position Validation of the 3-D CAD Manikin RAMSIS for Use in Automotive Design at General Motors

This paper describes the validation of RAMSIS, a 3-D CAD human model for ergonomic vehicle evaluation at General Motors (GM). The model’s capability to correctly predict position and posture in vehicle CAD environments was tested. H- and Eye point locations between RAMSIS manikins and their human counterparts were compared. We concluded that RAMSIS has good position and posture prediction capabilities and is a useful CAD ergonomic evaluation and design tool for vehicle interiors.
Technical Paper

Validation and Application of the 3-D CAD Manikin RAMSIS in Automotive Design

This paper describes the validation of RAMSIS, a 3-D CAD human model for ergonomic vehicle evaluation. At GM NAO, the model’s capability to correctly predict position and posture in vehicle CAD environments was tested. H- and Eye point locations between RAMSIS manikins and their human counterparts were compared. At GM/SAAB the model’s postural discomfort predictability was evaluated. Changes in postural discomfort predictions of the RAMSIS manikins were compared to that of the human subjects when they evaluated two different driving buck conditions. We concluded that RAMSIS has good position, posture and postural discomfort prediction capabilities and is a useful CAD ergonomic evaluation and design tool for vehicle interiors.