Refine Your Search

Topic

Author

Search Results

Technical Paper

Effects of Wind Speed and Longitudinal Direction on Fire Patterns from a Vehicle Fire in a Compact Car

2017-03-28
2017-01-1353
This paper compares the material consumption and fire patterns which developed on four nearly identical compact sedans when each was burned for exactly the same amount of time, but with different wind speed and direction during the burns. This paper will also compare the effects of environmental exposure to the fire patterns on the vehicles. The burn demonstrations were completed at an outdoor facility in southeast Michigan on four late model compact sedans. The wind direction was controlled by placing the subject vehicle with either the front facing into the wind, or rear facing into the wind. Two of the burns were conducted when the average observed wind speed was 5-6kph and two of the burns were conducted at an average observed wind speed of 19kph.
Journal Article

Locating Wire Short Fault for In-Vehicle Controller Area Network with Resistance Estimation Approach

2016-04-05
2016-01-0065
Wire shorts on an in-vehicle controller area network (CAN) impact the communication between electrical control units (ECUs), and negatively affects the vehicle control. The fault, especially the intermittent fault, is difficult to locate. In this paper, an equivalent circuit model for in-vehicle CAN bus is developed under the wire short fault scenario. The bus resistance is estimated and a resistance-distance mapping approach is proposed to locate the fault. The proposed approach is implemented in an Arduino-based embedded system and validated on a vehicle frame. The experimental results are promising. The approach presented in this paper may reduce trouble shooting time for CAN wire short faults and may enable early detection before the customer is inconvenienced.
Journal Article

Effect of Prior Austenite Grain Size on Impact Toughness of Press Hardened Steel

2016-04-05
2016-01-0359
Impact toughness (or resistance to fracture) is a key material property for press hardened steel used in construction of the safety-critical elements of automotive body structures. Prior austenite grain size, as primarily controlled by the incoming microstructure and austenitization process, is a key microstructural feature that influences the impact toughness of press hardened steel. In this paper, a special Charpy V-notch impact test is developed to quantify the impact toughness of press hardened steel sheets with various prior austenite grain sizes, by stacking a number of thin sheets via mechanical riveting. Both the ductile-to-brittle transition temperature and upper shelf energy are analyzed in an effort to establish a correlation between impact toughness and prior austenite grain size. Within tested conditions, impact performance shows only a slight decrease as the prior austenitic grain size increases from 18 to 38 microns.
Journal Article

Process Robustness of Laser Braze-Welded Al/Cu Connectors

2016-04-05
2016-01-1198
Laser welding of dissimilar metals such as Aluminum and Copper, which is required for Li-ion battery joining, is challenging due to the inevitable formation of the brittle and high electrical-resistant intermetallic compounds. Recent research has shown that by using a novel technology, called laser braze-welding, the Al-Cu intermetallics can be minimized to achieve superior mechanical and electrical joint performance. This paper investigates the robustness of the laser braze-welding process. Three product and process categories, i.e. choice of materials, joint configurations, and process conditions, are studied. It is found that in-process effects such as sample cleanness and shielding gas fluctuations have a minor influence on the process robustness. Furthermore, many pre-process effects, e.g. design changes such as multiple layers or anodized base material can be successfully welded by process adaption.
Technical Paper

Next Generation “Voltec” Charging System

2016-04-05
2016-01-1229
The electric vehicle on-board charger (OBC) is responsible for converting AC grid energy to DC energy to charge the battery pack. This paper describes the development of GM’s second generation OBC used in the 2016 Chevrolet Volt. The second generation OBC provides significant improvements in efficiency, size, and mass compared to the first generation. Reduced component count supports goals of improved reliability and lower cost. Complexity reduction of the hardware and diagnostic software was undertaken to eliminate potential failures.
Technical Paper

Application of CAEBAT Full Field Approach for a Liquid-Cooled Automotive Battery Pack

2016-04-05
2016-01-1217
The Computer-Aided Engineering of Automotive Batteries (CAEBAT) Phase 1 project is a U.S. Department of Energy-funded, multi-year project which is aimed at developing a complete CAE tool set for the automotive battery pack design. This paper reports the application of the full field approach of the CAEBAT which is developed by the General Motors-led industry team, for a 24-cell liquid-cooled prototype battery pack. It also summarizes the verification of the approach by comparing the simulation results with the measurement data. The simulation results using the Full Field Approach are found to have a very good agreement with the measurement data.
Technical Paper

The GM RWD PHEV Propulsion System for the Cadillac CT6 Luxury Sedan

2016-04-05
2016-01-1159
This paper describes the capabilities of a new two-motor plug-in hybrid-electric propulsion system developed for rear wheel drive. The PHEV system comprises a 2.0L turbocharged 4-cylinder direct-injected gasoline engine with the new hybrid transmission [1], a new traction power inverter module, a liquid-cooled lithium-ion battery pack, and on-board battery charger and 12V power converter module. The capability and features of the system components are described, and component performance and vehicle data are reported. The resulting propulsion system provides an excellent combination of electric-only driving, acceleration, and fuel economy.
Technical Paper

Combined Synchrotron X-Ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-Assisted Steels

2016-04-05
2016-01-0419
The strain-induced diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing.
Technical Paper

Model Based Approach for Analysis of In-Vehicle CAN Partial Networks Power Consumption

2016-04-05
2016-01-0064
The need for improved vehicle energy efficiency has increased greatly in recent years along with regulatory fuel economy standards. One key aspect of energy efficiency for both conventional and alternative propulsion vehicles is the energy efficiency of the electrical architecture. In the design of electrical architectures there are several techniques available to increase the energy efficiency. One technique is to manage CAN serial data communication by using Partial Networks. This paper describes a model based approach for simulating the vehicle network behavior when CAN Partial Networking is used as the strategy for need based ECU activation. The simulation results will in turn provide ECU power consumption data to support various electrical architecture design decisions.
Technical Paper

Fixed-Point Model Development Assistant Tool

2016-04-05
2016-01-0018
Development of the software using fixed-point arithmetic is known to be tedious and error-prone. Difficulty of selecting the correct data type can outwear software developers. The common retreats often sought after include manual calculation of the approximate ranges, exhaustive simulations with extreme input values and conservative development approach by using excessive word length. The first two retreats - manual calculation and exhaustive simulations - increase the software development time, and the third retreat - conservative development - leads to the excessive memory (RAM and ROM) utilization by the software. The model-based development environment such as the Simulink has graphical nature to the software with flow of data defined by connecting signal lines. The model-based software therefore gives an opportunity to trace signal flow in the software. Input-tracing method is presented to trace the flow of the input signals of the user selected block in the software model.
Technical Paper

A Hardware-in-the-Loop (HIL) Bench Test of a GT-Power Fast Running Model for Rapid Control Prototyping (RCP) Verification

2016-04-05
2016-01-0549
A GT-Power Fast Run Model simplified from detail model for HIL is verified with a bench test using the dSPACE Simulator. Firstly, the conversion process from a detailed model to FRM model is briefly described. Then, the spark timing, fuel pulse with control for FAR, and torque level control are developed for proof of concept. Moreover a series of FRM/Simulink co-simulation and HIL tests are conducted. In the summary, the test results are presented and compared with GT detailed model simulations. The test results show that the FRM/dSPACE HIL stays consistent in most variables of interest under 0.7-0.9 real-time factor condition between 1000 - 5000 RPM. The same steady-state can be reached by RCP controllers or with GT-Power internal controllers. The transient states are close using different control algorithm. The main purpose of HIL application is achieved, despite inconsistencies in performance data like fuel consumption.
Journal Article

Control and Integration Challenges for Future Automatic Transmissions

2016-04-05
2016-01-1102
The ever-increasing regulatory requirement on CO2 emissions drives efficiency improvement of vehicle powertrain systems. In this context, three mega trends have been happening in the automotive transmission industry. First, future automatic transmissions will have more gear steps to offer a broader ratio spread and finer ratio steps, which may enable the engine to operate at its efficient regions more often. Second, engine downsizing with boosted power and flexible cylinder deactivation have been become the technology trend to achieve better thermal efficiency. These engine technologies demand improved transmission dampers with greater isolation capabilities to drive future transmission dampers to be equipped with softer springs. Third, future transmissions will be more efficient due to new architectures and incremental subsystem improvements.
Journal Article

Development of Hybrid-Electric Propulsion System for 2016 Chevrolet Malibu

2016-04-05
2016-01-1169
GM has developed an all-new gasoline-electric hybrid powertrain for the model year 2016 Chevrolet Malibu Hybrid vehicle, which was designed to achieve excellent fuel economy, performance, and drive quality. The powertrain shares the transmission architecture with the 2016 Chevrolet Volt extended range electric vehicle, but includes changes to optimize the system for engine driven charge sustaining operation in the range of conditions represented by the US EPA 5 cycle fuel economy tests. In this paper, we describe the Malibu Hybrid propulsion system features and components, including the battery pack, transaxle, electric motors and power electronics, engine, and thermal system. The modifications between the Volt and Malibu Hybrid propulsion systems are discussed and explained as resulting from the differences between the primarily electric and gasoline powered applications.
Journal Article

Design of the Chevrolet Bolt EV Propulsion System

2016-04-05
2016-01-1153
Building on the experience of the Chevrolet Spark EV battery electric vehicle, General Motors (GM) has developed a propulsion system with increased capability for its next generation Chevrolet Bolt EV. It propels a new larger electric vehicle with significantly greater electric driving range. Through extensive analysis the primary propulsion system components, which include the drive unit, traction electric motor, power electronics, energy storage, and on-board charging module, were optimized individually and as an integrated system to deliver improvements in propulsion system energy, power, torque and efficiency. The results deliver outstanding EV range and fun-to-drive acceleration performance.
Journal Article

Further Research into the Role of the Caliper Piston in Brake Roughness

2015-09-27
2015-01-2667
Previously published research [1] covering the role of piston material properties in brake torque variation sensitivity and roughness concluded that phenolic pistons have significantly higher low-pressure range compliance than steel pistons, which promotes lower roughness propensity. It also determined that this property could be successfully characterized using a modern generation of direct-acting servo hydraulically actuated brake component compression test stands. This paper covers a subsequent block of research into the role of the caliper piston in brake torque variation sensitivity (BTV sensitivity) and thermal roughness of a brake corner. It includes measurements of hydraulic stiffness of pistons in a “wet” fixture, both with and without a brake pad and multi-layer bonded noise shim.
Technical Paper

Development of an End-of-Line Driveline System Balance Tester

2015-06-15
2015-01-2187
This paper describes the development of a semi-automated end-of-line driveline system balance tester for an automotive assembly plant. The overall objective was to provide final quality assurance for acceptable driveline noise and vibration refinement in a rear wheel drive vehicle. The problem to be solved was how to measure the driveline system unbalance within assembly plant constraints including cycle time, operator capability, and integration with a pre-existing vehicle roll test machine. Several challenging aspects of the tester design and development are presented and solutions to these challenges are addressed. Major design aspects addressed included non-contacting vibration sensing, data acquisition/processing system and vehicle position feedback. Development challenges addressed included interaction of engine and driveline vibration orders, flexible driveline coupling effects, tachometer positional reference error, and vehicle-to-vehicle variation of influence coefficients.
Journal Article

FEA Development of Spot Weld Modeling with Fracture Forming Limit Diagram(FFLD) Failure Criteria and Its Application to Vehicle Body Structure

2015-04-14
2015-01-1316
Spot weld separation in vehicle development stage is one of the critical phenomena in structural analyses regarding quasi-static test condition, like roof strength or seat/belt pull. It directly reduces structural performance by losing connected load path and occasionally introduces tearing on surrounding sheet metals. Traditionally many efforts have been attempted to capture parent metal ductile fracture, but not applied to spot weld separations in automotive FEA simulations. [1,2,3] This paper introduces how to develop FFLD failure criteria from a series of parametric study on ultra high strength sheet steel and deals with failure criteria around spot weld and parent metal. Once the fracture strains for sheet steels are determined, those developed values were applied to traditional spot weld coupon FEA simulations and tests. Full vehicle level roof strength FEA simulations on a typical automotive body structure were performed and verified to the physical tests.
Technical Paper

Park Pawl Dynamic System Engagement Speed Calculation Using Isight

2015-04-14
2015-01-1363
For a CAE model of the park pawl dynamic system, the engagement speed calculation is done by controlling the input rotational velocity of the vehicle. Usually, it requires multiple adjustment of the input rotational velocity to get the engagement speed and that demands time, effort and file management skill of an analyst. The current objective of this paper is to demonstrate how software Isight, working with ABAQUS Explicit as the solver, can be used to automate the engagement speed calculation procedure and thus reduce the time and effort required of a CAE analyst. The automated system is developed in a way such that the accuracy of the results can be controlled by the end user. It is observed that the automated system significantly saves an analyst's effort. The system design can be optimized easily for modifiable design features such as the torsional spring and the actuator spring stiffness values using the proposed procedure.
Technical Paper

Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

2015-04-14
2015-01-0459
This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.
Journal Article

Electrical Architecture Optimization and Selection - Cost Minimization via Wire Routing and Wire Sizing

2014-04-01
2014-01-0320
In this paper, we propose algorithms for cost minimization of physical wires that are used to connect electronic devices in the vehicle. The wiring cost is one of the most important drivers of electrical architecture selection. Our algorithms perform wire routing from a source device to a destination device through harnesses, by selecting the optimized wire size. In addition, we provide optimized splice allocation with limited constraints. Based on the algorithms, we develop a tool which is integrated into an off-the-shelf optimization and workflow system-level design tool. The algorithms and the tool provide an efficient, flexible, scalable, and maintainable approach for cost analysis and architecture selection.
X