Refine Your Search

Topic

Author

Search Results

Journal Article

Locating Wire Short Fault for In-Vehicle Controller Area Network with Resistance Estimation Approach

2016-04-05
2016-01-0065
Wire shorts on an in-vehicle controller area network (CAN) impact the communication between electrical control units (ECUs), and negatively affects the vehicle control. The fault, especially the intermittent fault, is difficult to locate. In this paper, an equivalent circuit model for in-vehicle CAN bus is developed under the wire short fault scenario. The bus resistance is estimated and a resistance-distance mapping approach is proposed to locate the fault. The proposed approach is implemented in an Arduino-based embedded system and validated on a vehicle frame. The experimental results are promising. The approach presented in this paper may reduce trouble shooting time for CAN wire short faults and may enable early detection before the customer is inconvenienced.
Journal Article

Adjoint-Driven Aerodynamic Shape Optimization Based on a Combination of Steady State and Transient Flow Solutions

2016-04-05
2016-01-1599
Aerodynamic vehicle design improvements require flow simulation driven iterative shape changes. The 3-D flow field simulations (CFD analysis) are not explicitly descriptive in providing the direction for aerodynamic shape changes (reducing drag force or increasing the down-force). In recent times, aerodynamic shape optimization using the adjoint method has been gaining more attention in the automotive industry. The traditional DOE (Design of Experiment) optimization method based on the shape parameters requires a large number of CFD flow simulations for obtaining design sensitivities of these shape parameters. The large number of CFD flow simulations can be significantly reduced if the adjoint method is applied. The main purpose of the present study is to demonstrate and validate the adjoint method for vehicle aerodynamic shape improvements.
Journal Article

Internal Combustion Engine - Automatic Transmission Matching for Next Generation Power Transfer Technology Development in Automotive Applications

2016-04-05
2016-01-1099
Development of the next generation internal combustion engines and automatic transmissions for automotive applications is a mandatory powertrain engineering activity required now and in the coming years to meet forthcoming global emissions regulations. This paper details a preliminary investigation into possible synergies for fuel consumption reduction considering emerging automotive technologies integrated into the next generation combustion engine and automatic transmission architectures. A range of hypothetical gasoline engines were created and paired with a generalized set of step gear automatic transmissions designed to meet the performance requirements of high volume longitudinal full size truck application. These designs were then run through a design of experiments orthogonal array for prediction of fuel consumption on the WLTP test schedule and stand still acceleration to 100 kph.
Technical Paper

Next Generation “Voltec” Charging System

2016-04-05
2016-01-1229
The electric vehicle on-board charger (OBC) is responsible for converting AC grid energy to DC energy to charge the battery pack. This paper describes the development of GM’s second generation OBC used in the 2016 Chevrolet Volt. The second generation OBC provides significant improvements in efficiency, size, and mass compared to the first generation. Reduced component count supports goals of improved reliability and lower cost. Complexity reduction of the hardware and diagnostic software was undertaken to eliminate potential failures.
Technical Paper

Fixed-Point Model Development Assistant Tool

2016-04-05
2016-01-0018
Development of the software using fixed-point arithmetic is known to be tedious and error-prone. Difficulty of selecting the correct data type can outwear software developers. The common retreats often sought after include manual calculation of the approximate ranges, exhaustive simulations with extreme input values and conservative development approach by using excessive word length. The first two retreats - manual calculation and exhaustive simulations - increase the software development time, and the third retreat - conservative development - leads to the excessive memory (RAM and ROM) utilization by the software. The model-based development environment such as the Simulink has graphical nature to the software with flow of data defined by connecting signal lines. The model-based software therefore gives an opportunity to trace signal flow in the software. Input-tracing method is presented to trace the flow of the input signals of the user selected block in the software model.
Journal Article

Electric Motor Design of General Motors’ Chevrolet Bolt Electric Vehicle

2016-04-05
2016-01-1228
A permanent magnet synchronous motor (PMSM) motor is used to design the propulsion system of GM’s Chevrolet Bolt battery electric vehicle (BEV). Magnets are buried inside the rotor in two layer ‘V’ arrangement. The Chevrolet Bolt BEV electric machine rotor design optimizes the magnet placement between the adjacent poles asymmetrically to lower torque ripple and radial force. Similar to Chevrolet Spark BEV electric motor, a pair of small slots are stamped in each rotor pole near the rotor outer surface to lower torque ripple and radial force. Rotor design optimizes the placement of these slots at different locations in adjacent poles providing further reduction in torque ripple and radial force. As a result of all these design features, the Chevrolet Bolt BEV electric motor is able to meet the GM stringent noise and vibration requirements without implementing rotor skew, which (rotor skew) lowers motor performance and adds complexity to the rotor manufacturing and hence is undesirable.
Journal Article

Development of Hybrid-Electric Propulsion System for 2016 Chevrolet Malibu

2016-04-05
2016-01-1169
GM has developed an all-new gasoline-electric hybrid powertrain for the model year 2016 Chevrolet Malibu Hybrid vehicle, which was designed to achieve excellent fuel economy, performance, and drive quality. The powertrain shares the transmission architecture with the 2016 Chevrolet Volt extended range electric vehicle, but includes changes to optimize the system for engine driven charge sustaining operation in the range of conditions represented by the US EPA 5 cycle fuel economy tests. In this paper, we describe the Malibu Hybrid propulsion system features and components, including the battery pack, transaxle, electric motors and power electronics, engine, and thermal system. The modifications between the Volt and Malibu Hybrid propulsion systems are discussed and explained as resulting from the differences between the primarily electric and gasoline powered applications.
Journal Article

Design of the Chevrolet Bolt EV Propulsion System

2016-04-05
2016-01-1153
Building on the experience of the Chevrolet Spark EV battery electric vehicle, General Motors (GM) has developed a propulsion system with increased capability for its next generation Chevrolet Bolt EV. It propels a new larger electric vehicle with significantly greater electric driving range. Through extensive analysis the primary propulsion system components, which include the drive unit, traction electric motor, power electronics, energy storage, and on-board charging module, were optimized individually and as an integrated system to deliver improvements in propulsion system energy, power, torque and efficiency. The results deliver outstanding EV range and fun-to-drive acceleration performance.
Journal Article

A Correlation Study of Wind Tunnels for Reduced-Scale Automotive Aerodynamic Development

2016-04-05
2016-01-1598
Wind tunnel testing of reduced-scale models is a valuable tool for aerodynamic development during the early stages of a new vehicle program, when basic design themes are being evaluated. Both full-and reduced-scale testing have been conducted for many years at the General Motors Aerodynamics Laboratory (GMAL), but with increased emphasis on aerodynamic drag reduction, it was necessary to identify additional facilities to provide increased test capacity. With vehicle development distributed among engineering teams around the world, it was also necessary to identify facilities local to those teams, to support their work. This paper describes a cooperative effort to determine the correlation among five wind tunnels: GMAL, the Glenn L.
Technical Paper

Enhanced Acoustic Performance using Key Design Parameters of Headliners

2015-06-15
2015-01-2339
Sound absorption materials can be key elements for mass-efficient vehicle noise control. They are utilized at multiple locations in the interior and one of the most important areas is the roof. At this location, the acoustic treatment typically comprises a headliner and an air gap up to the body sheet metal. The acoustic performance requirement for such a vehicle subsystem is normally a sound absorption curve. Based on headliner geometry and construction, the sound absorption curve shape can be adjusted to increase absorption in certain frequency ranges. In this paper an overall acoustic metric is developed to relate design parameters to an absorption curve shape which results in improved in-vehicle performance. This metric is based on sound absorption coefficient and articulation index. Johnson-Champoux-Allard equivalent fluid model and diffuse field equations are used. The results are validated using impedance tube measurements.
Journal Article

Automatic Transmission Gear Ratio Optimization and Monte Carlo Simulation of Fuel Consumption with Parasitic Loss Uncertainty

2015-04-14
2015-01-1145
This investigation utilizes energy analysis and statistical methods to optimize step gear automatic transmissions gear selection for fuel consumption. A full factorial matrix of simulations using energy analysis was performed to determine the optimal number of gears and gear ratios that provide the best fuel consumption performance for a particular vehicle - engine application. The full factorial matrix setup as a design of experiment (DOE) was applied to five vehicle applications, each with two engines to examine the potential differences that variations in road load and engine characteristics might have on optimal transmission gearing selection. The transmission gearing options considered in the DOE were number of gears, launch gear ratio and top gear ratio. Final drive ratio was also included due to its global influence on vehicle performance and powertrain operating speeds and torque.
Journal Article

Chevrolet Volt Electric Utilization

2015-04-14
2015-01-1164
Evaluation of one year of in-use operating data from first generation Chevrolet Volt Extended-Range Electric Vehicle (E-REV) retail customers determined trip initial Internal Combustion Engine (ICE) starts were reduced by 70% relative to conventional vehicles under the same driving conditions. These Volt drivers were able to travel 74% of their total miles in EV without requiring the ICE's support. Using this first generation Volt data, performance of the second generation Volt is projected. The Southern California Association of Governments (SCAG) Regional Travel Survey (RTS) data set was also processed to make comparisons between realistic PHEV constraints and E-REV configurations. A Volt characteristic E-REV was found to provide up to 40 times more all-electric trips than a PHEV over the same data set.
Technical Paper

Normally-Engaged Dual-Piston Clutch for Engine Stop-Start Application

2015-04-14
2015-01-1141
For the conventional 6 speed automatic transmission with engine stop-start powertrain, an electrically-driven auxiliary pump is implemented to maintain the transmission line pressure as required to lock-up the CB1234 clutch during engine auto-stop conditions. Upon releasing the brake pedal, the transmission engages into first gear with the objective to accelerate the vehicle in a responsive manner. In this study, a novel normally-engaged dual-piston clutch concept is designed to keep the CB1234 clutch locked-up during engine auto-stop conditions with the intention to eliminate the auxiliary pump without compromising vehicle performance. This dual piston clutch concept requires a relatively low line pressure to release the normally-engaged clutch when needed, thus, minimizing the hydraulic pumping work. To explore the functionality of this concept under a wide-open-throttle (WOT) auto-start transition, modeling and simulation of the normally-engaged dual-piston clutch is completed.
Technical Paper

Optimization of the Customer Experience for Routine Handling Performance

2015-04-14
2015-01-1588
Rapidly increasing customer, financial, and regulatory pressures are creating clear changes in the calculus of vehicle design for modern automotive OEM's (Original Equipment Manufacturers). Customers continue to demand shorter product lifecycles; the increasingly competitive global market exerts pressure to reduce costs in all stages of development; and environmental regulations drive a continuous need to reduce mass and energy consumption. OEM's must confront these challenges while continuing to satisfy the customer. The foundation to meeting these challenges includes: (1) Continued development of objective metrics to quantify performance; (2) Frontloading vehicle design content and performance synthesis; (3) A precise understanding of the customer and their performance preferences under diverse usage conditions. These combined elements will enable products better optimized amongst competing (and often contradictory) imperatives.
Technical Paper

Thermal Electric Analysis of Bond Wires Used in Automotive Electronic Modules

2015-04-14
2015-01-0195
Bond wires are used in automotive electronic modules to carry current from external harness to components where flexibility under thermal cyclic loading is very essential between PCB (Printed Circuit Board) and connectors. They are very thin wires (few μm) made up of gold, aluminum or copper and have to undergo mechanical reliability to withstand extreme mechanical and thermal loads during different vehicle operation scenarios. Thermal reliability of bond wire is to make sure that it can withstand prescribed electric current under given boundary conditions without fusing thereby retaining electronic module's functionality. While carrying current, bond wire by virtue of its nature resists electric current flow and generates heat also called as joule heating. Joule heating is proportional to current flow and electrical resistance and if not handled properly can lead to thermal run away conditions.
Technical Paper

Energy Efficiency Impact of Localized Cooling/Heating for Electric Vehicle

2015-04-14
2015-01-0352
The present paper reports on a study of the HVAC energy usage for an EREV (extended range electric vehicle) implementation of a localized cooling/heating system. Components in the localized system use thermoelectric (TE) devices to target the occupant's chest, face, lap and foot areas. A novel contact TE seat was integrated into the system. Human subject comfort rides and a thermal manikin in the tunnel were used to establish equivalent comfort for the baseline and localized system. The tunnel test results indicate that, with the localized system, HVAC energy savings of 37% are achieved for cooling conditions (ambient conditions greater than 10 °C) and 38% for heating conditions (ambient conditions less than 10 °C), respectively based on an annualized ambient and vehicle occupancy weighted method. The driving range extension for an electric vehicle was also estimated based on the HVAC energy saving.
Journal Article

Assessment of the Capability of EPS to Reduce Steering Wheel Pull and Vehicle Misalignment

2015-04-14
2015-01-1505
Vehicle steering wheel pull is a condition experienced by customers where a constant torque at the steering wheel is required to maintain a straight path. Steering wheel pull may be accompanied by the secondary effects of steering wheel angle misalignment and vehicle thrust angle “dog-tracking.” EPS pull compensation is a feature that can automatically compensate vehicle steering wheel pull. This paper examines customer benefits, operating principles, effectiveness, and robustness of EPS pull compensation in vehicles. Vehicle road test data indicate EPS can correct a severe vehicle steering wheel pull. Using fundamental physics equations, an analysis tool is derived to support further investigation of steering wheel angle misalignment and vehicle thrust angle. The final section presents a designed experiment revealing parameters most influencing vehicle robustness to chassis and road characteristics.
Journal Article

Advancement in Vehicle Development Using the Auto Transfer Path Analysis

2014-04-01
2014-01-0379
This paper presents the most recent advancement in the vehicle development process using the one-step or auto Transfer Path Analysis (TPA) in conjunction with the superelement, component mode synthesis, and automated multi-level substructuring techniques. The goal is to identify the possible ways of energy transfer from the various sources of excitation through numerous interfaces to given target locations. The full vehicle model, consists of superelements, has been validated with the detailed system model for all loadcases. The forces/loads can be from rotating components, powertrain, transfer case, chain drives, pumps, prop-shaft, differential, tire-wheel unbalance, road input, etc., and the receiver can be at driver/passenger ears, steering column/wheel, seats, etc. The traditional TPA involves two solver runs, and can be fairly complex to setup in order to ensure that the results from the two runs are consistent with subcases properly labeled as input to the TPA utility.
Journal Article

Design Optimization, Development and Manufacturing of General Motors New Battery Electric Vehicle Drive Unit (1ET35)

2014-04-01
2014-01-1806
The General Motors (GM) 1ET35 drive unit is designed for an optimum combination of efficiency, performance, reliability, and cost as part of the propulsion system for the 2014 Chevrolet Spark Electric Vehicle (EV) [1]. The 1ET35 drive unit is a coaxial transaxle arrangement which includes a permanent-magnet (PM) electric motor and a low loss single-planetary transmission and is the sole source of propulsion for the battery-only electric vehicle (BEV) Spark. The 1ET35 is designed with experience gained from the first modern production BEV, the 1996 GM EV1. This paper describes the design optimization and development of the 1ET35 and its electric motor that will be made in the United States by GM. The high torque density electric motor design is based on high-energy permanent magnets that were originally developed by GM in connection with the EV1 and GM bar-wound stator technology introduced in the 2Mode Hybrid electric transmission, used in the Chevrolet Volt and in GM eAssist systems.
Technical Paper

A Rough Road Ride Simulation Assessment with Flexible Vehicle Body

2014-04-01
2014-01-0112
A rough road ride assessment provides an insightful evaluation of vehicle responses beyond the frequency range of suspension or steering modes. This is when body structure influence on the vehicle performance can be detected by vehicle occupants. In this paper, a rough road is used to evaluate vehicle ride performance and multi-body simulation (MBS) models are developed along with finite-element (FE) representations of the vehicle body and structure. To produce high fidelity simulation results in the frequency range of interest, various vehicle subsystem modeling contents are examined. A case study of a vehicle model with two different structures is provided. Time histories and frequency based analyses are used to obtain insights into the effects of body structure on vehicle responses. Finally, two metrics (‘Isolation’ and ‘Shake’) are used to distinguish the vehicle ride performance.
X