Refine Your Search

Topic

Author

Search Results

Technical Paper

Accelerated Life Test Methodology for Li-Ion Batteries in Automotive Applications

2013-04-08
2013-01-1548
Determining Li-ion battery life through life modeling is an excellent tool in determining and estimating end-of-life performance. Achieving End-of-Life (EOL) can be challenging since it is difficult to achieve both cycle and calendar life during the same test without years of testing. The plan to correlate testing with the model included three (3) distinct temperature ranges, beginning with the four-Season temperature profile, an aggressive profile with temperatures in the 50 to 55°C range, and using a mid-temperature range (40-45°C) as a final comparison test. A high duty-cycle drive profile was used to cycle all of the batteries as quickly as possible to reach the one potential definition of EOL; significant increases in resistance or capacity fade.
Technical Paper

The Simscape Language and Powertrain Applications

2013-04-08
2013-01-0822
Simscape is a physical modeling language developed by Mathworks Inc. The language uses equation statements instead of assignment statements to describe physical systems. The paper focuses on the Simscape language itself instead of using components in the Simscape libraries. The language will be introduced from a perspective different from the Mathworks' Physical Network point of view. Our perspective focuses on two types of variables at the connectors. In additional, internal variables are not separated into through and across variables. The alternative perspective is more general and easier to understand. The paper also illustrates how to develop components in a powertrain library following the proposed new perspective.
Technical Paper

A Statistical Approach for Correlation/Validation of Hot-Soak Terminal Temperature of a Vehicle Cabin CFD Model

2013-04-08
2013-01-0854
A Design for Six Sigma (DFSS) statistical approach is presented in this report to correlate a CFD cabin model with test results. The target is the volume-averaged hot-soak terminal temperature. The objective is to develop an effective correlation process for a simplified CFD cabin model so it can be used in practical design process. It is, however, not the objective in this report to develop the most accurate CFD cabin model that would be too expensive computationally at present to be used in routine design analysis. A 3-D CFD model of a vehicle cabin is the central part of the computer modeling in the development of automotive HVAC systems. Hot-soak terminal temperature is a thermal phenomenon in the cabin of a parked vehicle under the Sun when the overall heat transfer reaches equilibrium. It is often part of the simulation of HVAC system operation.
Technical Paper

A Unified Framework of Adaptive Cruise Control for Speed Limit Follower and Curve Speed Control Function

2013-04-08
2013-01-0618
Today many vehicles are being developed with advanced computing and sensing technologies. These new technologies have contributed in enhancing driving safety and convenience. As an example, the Adaptive Cruise Control (ACC) can automatically adjust the vehicle speed to driver's set speed and maintain the driver-requested headway distance to the lead vehicle. In this paper, we further consider the automatic control of speed according to the road attributes, e.g., the speed limit and curve of the road. Two new features, ‘speed limit follower’ and ‘curve speed control’ algorithms, are proposed in this paper. These new features communicate with the conventional ACC system and control the vehicle speed while traveling across different curved roads and speed limit zones. These new features were developed as an independent function, so they can be integrated with any other existing ACC systems.
Journal Article

Idealized Vehicle Crash Test Pulses for Advanced Batteries

2013-04-08
2013-01-0764
This paper reports a study undertaken by the Crash Safety Working Group (CSWG) of the United States Council for Automotive Research (USCAR) to determine generic acceleration pulses for testing and evaluating advanced batteries subjected to inertial loading for application in electric passenger vehicles. These pulses were based on characterizing vehicle acceleration time histories from standard laboratory vehicle crash tests. Crash tested passenger vehicles in the United States vehicle fleet of the model years 2005-2009 were used in this study. Crash test data, in terms of acceleration time histories, were collected from various crash modes conducted by the National Highway Traffic Safety Administration (NHTSA) during their New Car Assessment Program (NCAP) and Federal Motor Vehicle Safety Standards (FMVSS) evaluations, and the Insurance Institute for Highway Safety (IIHS).
Technical Paper

Fault Tolerance Characteristics of FlexRay Central Devices

2013-04-08
2013-01-1185
FlexRay is a communication system targeted at, among other things, fault tolerant applications. In contrast to some other communication systems, FlexRay systems often contain a central device such as an active star. Due to their ability to isolate portions of the communication system central devices offer opportunities to mitigate certain faults. This paper presents several alternatives for the central device of a FlexRay system, specifically active stars, FlexRay switches, and Central Bus Guardians. The paper analyzes the fault detection, isolation and mitigation mechanisms of each central device based on available documentation and specifications.
Technical Paper

Application of Insulation Standards to High Voltage Automotive Applications

2013-04-08
2013-01-1528
Insulation coordination requirements for electrical equipment applications are defined in various standards. The standards are defined for application to stationary mains connected equipment, like IT, power supply or industrial equipment. Protection from an electric shock is considered the primary hazard in these standards. These standards have also been used in the design of various automotive components. IEC 60664-1 is an example of the standard. Automobiles are used across the world, in various environments and in varied usage by the customers. Automobiles need to consider possible additional hazards including electric shock. This paper will provide an overview of how to adapt these standards for automotive application in the design of High Voltage (HV) automotive components, including High Voltage batteries and other HV components connected to the battery. The basic definitions from the standards and the principles are applied for usage in automotive applications.
Journal Article

Development of General Motors' eAssist Powertrain

2012-04-16
2012-01-1039
General Motors' (GM) eAssist powertrain builds upon the knowledge and experience gained from GM's first generation 36Volt Belt-Alternator-Starter (BAS) system introduced on the Saturn VUE Green Line in 2006. Extensive architectural trade studies were conducted to define the eAssist system. The resulting architecture delivers approximately three times the peak electric boost and regenerative braking capability of 36V BAS. Key elements include a water-cooled induction motor/generator (MG), an accessory drive with a coupled dual tensioner system, air cooled power electronics integrated with a 115V lithium-ion battery pack, a direct-injection 2.4 liter 4-cylinder gasoline engine, and a modified 6-speed automatic transmission. The torque-based control system of the eAssist powertrain was designed to be fully integrated with GM's corporate common electrical and controls architectures, enabling the potential for broad application across GM's global product portfolio.
Technical Paper

Identification of Transportation Battery Systems for Recycling

2012-04-16
2012-01-0351
Electrification of the transportation industry is increasing rapidly with batteries currently the technology of choice. At the end of life, the battery chemistry used to electrify the vehicle may not be easily identifiable. A simple, common identifier is required to allow consumers, service and waste management personnel to direct unknown battery types to appropriate recyclers or secondary use markets. Recyclers also benefit from this identifier as it allows them to sort, screen for potential contamination to existing process streams, and identify the manufacturer so they may contact them to find detailed information about the battery to ensure proper and safe recycling. The SAE Battery Recycling Committee has recommended that batteries be identified by battery system, miscellaneous hazards and date of manufacture be identified as part of chemistry identification code. For the lithium-ion chemistry it is further recommended that cathode and anode be specified.
Technical Paper

Detection of Urea Injection System Faults for SCR Systems

2012-04-16
2012-01-0431
The urea injection is a key function in Urea-SCR NOx reduction system. As the tailpipe NOx emission standard becomes increasingly stringent, it is critical to diagnose the injection faults in order to guarantee the SCR DeNox functionality and performance. Particularly, a blocked injector may cause under-dosing of urea thus reduced DeNox functionality. Monitoring urea injection rate is one of the efficient methods for injection fault diagnosis. However, direct measurement of the urea mass flow is not feasible due to its high cost. This paper presents methods that are promising for detecting and isolating faults in urea injection by processing certain actuator signal and existing sensory measurements, e.g., the injector Pulse Amplitude Modulated (PAM) command and the pressure of the urea delivery line. No additional dedicated sensor is required. Three methods are discussed to detect urea injection system faults.
Technical Paper

Robust State of Charge Estimation of Lithium-Ion Batteries via an Iterative Learning Observer

2012-04-16
2012-01-0659
This work is to propose a new Iterative Learning Observer (ILO)-based strategy for State Of Charge (SOC) estimation. The ILO is able to estimate the SOC in real time while identifying modeling errors and/or disturbances at the same time. An Electrical-Circuit Model (ECM) is adopted to characterize the Lithium-ion battery behavior. The ILO is designed based on this ECM and the stability is proved. Several experiments are conducted and the collected data is used to extract ECM parameters. The effectiveness of the estimated SOCs via ILO is verified by the experimental results. This implies that the ILO-based SOC determination scheme is effective to identify the SOC in real time.
Technical Paper

Crash Test Pulses for Advanced Batteries

2012-04-16
2012-01-0548
This paper reports a 2010 study undertaken to determine generic acceleration pulses for testing and evaluating advanced batteries for application in electric passenger vehicles. These were based on characterizing vehicle acceleration time histories from standard laboratory vehicle crash tests. Crash tested passenger vehicles in the United States vehicle fleet of the model years 2005-2009 were used. The crash test data were gathered from the following test modes and sources: 1 Frontal rigid flat barrier test at 35 mph (NHTSA NCAP) 2 Frontal 40% offset deformable barrier test at 40 mph (IIHS) 3 Side moving deformable barrier test at 38 mph (NHTSA side NCAP) 4 Side oblique pole test at 20 mph (US FMVSS 214/NHTSA side NCAP) 5 Rear 70% offset moving deformable barrier impact at 50 mph (US FMVSS 301). The accelerometers used were from locations in the vehicle where deformation is minor or non-existent, so that the acceleration represents the “rigid-body” motion of the vehicle.
Journal Article

Cabin Heating and Windshield Defrosting for Extended Range Electric, Pure Electric, & Plug-in Hybrid Vehicles

2012-04-16
2012-01-0121
Conventional HVAC systems adjust the position of a temperature door, to achieve a required air temperature discharged into the passenger compartment. Such systems are based upon the fact that a conventional (non-hybrid) vehicle's engine coolant temperature is controlled to a somewhat constant temperature, using an engine thermostat. Coolant flow rate through the cabin heater core varies as the engine speed changes. EREVs (Extended Range Electric Vehicles) & PHEVs (Plug-In Hybrid Electric Vehicles) have two key vehicle requirements: maximize EV (Electric Vehicle) range and maximize fuel economy when the engine is operating. In EV mode, there is no engine heat rejection and battery pack energy is consumed in order to provide heat to the passenger compartment, for windshield defrost/defog and occupant comfort. Energy consumption for cabin heating must be optimized, if one is to optimize vehicle EV range.
Technical Paper

Voltec Battery Design and Manufacturing

2011-04-12
2011-01-1360
In July 2007, GM announced that it would produce the Chevy Volt, the first high-production volume electric vehicle with extended range capability, by 2010. In January 2009, General Motors announced that the Chevrolet Volt's lithium ion Battery Pack, capable of propelling the Chevy Volt on battery-supplied electric power for up to 40 miles, would be designed and assembled in-house. The T-shaped battery, a subset of the Voltec propulsion system, comprises 288 cells, weighs 190 kg, and is capable of supplying over 16 kWh of energy. Many technical challenges presented themselves to the team, including the liquid thermal management of the battery, the fast battery pack development timeline, and validation of an unproven high-speed assembly process. This paper will first present a general overview of the approach General Motors utilized to bring the various engineering organizations together to design, develop, and manufacture the Volt battery.
Technical Paper

Approach to Validation Plan Development for Advanced Battery Systems in Vehicle Applications

2011-04-12
2011-01-1366
As advanced battery systems become a standard choice for mainstream production vehicle portfolios, comprehensive battery system validation plans are essential to ensure that the battery performance, reliability, and durability targets are met prior to vehicle integration. (Note: Safety and Abuse testing are outside of the scope of this paper.) The validation plan for the Chevrolet Volt Rechargeable_Energy Storage System (RESS), the first lithium-ion battery pack designed and manufactured by General Motors (GM), was developed using a functional silo approach based on the battery design requirements documentation. While the Chevrolet Volt was the lead program at General Motors to use this validation plan development approach, other GM programs with different battery system mounting locations and cooling techniques are now using this method.
Journal Article

Application of System Safety Engineering Processes to Advanced Battery Safety

2011-04-12
2011-01-1369
The battery system in the Chevrolet Volt is very complex and must balance a variety of performance criteria, including the safety of vehicle occupants and other users. In order to assure a thorough approach to battery system safety, a system safety engineering process was applied and found to provide a useful framework. This methodical approach began with the preliminary hazard analysis and continued through requirements definition, design development and, finally, validation. Potentially hazardous conditions related directly to functional safety (for example, charge control) and primary physical safety (for example, short circuit conditions) can all be addressed in this manner. Typical battery abuse testing, as well as newly defined limit testing, supported the effort. Extensive documentation, traceability and peer reviews helped to verify that all issues were addressed.
Technical Paper

Thermal Behavior Study on HEV Air-Cooled Battery Pack

2011-04-12
2011-01-1368
Recently, an increased emphasis has been seen for improving the cooling uniformity and efficiency of HEV battery pack in an effort to increase the battery performance and life. This study examined the effects of geometry changes in cooling systems of battery packs on thermal behavior of battery cells and pressure drop across the battery pack. Initially, a multi-physics battery thermal model was correlated to physical test data. An analytical design of experiments (DOE) approach using Latin-hypercube technique was then developed by integrating the correlated battery thermal model with a commercial optimization code, iSIGHT, and a morphing code, DEP Morpher. The design concepts of battery pack cooling systems were finally identified by performing analytical DOE/optimization studies to estimate the effects of cooling flow and geometries of cooling ducts on the battery temperature variation and pressure drop across the battery pack.
Journal Article

VOLTEC Battery System for Electric Vehicle with Extended Range

2011-04-12
2011-01-1373
Mid 2006 a study group at General Motors developed the concept for the electric vehicle with extended range (EREV),. The electric propulsion system should receive the electrical energy from a rechargeable energy storage system (RESS) and/or an auxiliary power unit (APU) which could either be a hydrogen fuel cell or an internal combustion engine (ICE) driven generator. The study result was the Chevrolet VOLT concept car in the North American Auto Show in Detroit in 2007. The paper describes the requirements, concepts, development and the performance of the battery used as RESS for the ICE type VOLTEC propulsion system version of the Chevrolet Volt. The key requirement for the RESS is to provide energy to drive an electric vehicle with “no compromised performance” for 40 miles. Extended Range Mode allows for this experience to continue beyond 40 miles.
Technical Paper

Effects of Fretting Corrosion on Lift Glass

2011-04-12
2011-01-1434
The electrical architecture design of a rear back glass defrost grid system encompasses many critical criteria that must be integrated into the design. For example, the defrost clip location and interface to the glass must meet all vehicle performance requirements. If the defrost clip to the glass interface is not resistant to vibration and relative movement, detachment and loss of function can occur. This paper describes a back glass defrost clip with a solder joint that is robust to manufacturing variations and customer usage conditions. A designed experiment using Design for Six Sigma methodologies was performed to understand the effects of the attachment interface to the electrical wiring pigtail, and parameters that affect performance. The working constraints, testing set up, validation, and root cause investigation of the clip detachment phenomenon is covered in this paper.
Technical Paper

An Approach to the Safety Design and Development of a Brake-by-Wire Control System

2011-04-12
2011-01-0212
The increasing usage of brake-by-wire systems in the automotive industry has provided manufacturers with the opportunity to improve both vehicle and manufacturing efficiency. The replacement of traditional mechanical and hydraulic control systems with electronic control devices presents different potential vehicle-level safety hazards than those presented by conventional braking systems. The proper design, development, and integration of a brake-by-wire control system requires that hazards are reasonably prevented or mitigated in order to maximize the safety of the vehicle operator, occupant(s), and passers-by.
X