Refine Your Search

Topic

Search Results

Technical Paper

Making a Regional Belt Drive Rack Electric Power Steering System Global

2017-11-07
2017-36-0188
An actual trend in the automotive industry is to have global products in order to have economy of scale. This paper presents how a Belt Drive Rack EPS developed for the North American market had to be modified in order to be assembled in a Vehicle sold all around the world. Main technical challenges for achieving that goal were generated from different Architectures, whether electrical or mechanical, used in each vehicle, Packaging issues and Regional Requirements. Main features affected are Database Configuration, Electromagnetic Compatibility, Smooth Road Shake mitigation and Pull Compensation.
Journal Article

Evaluation of Prog-Die Wear Properties on Bare DP1180 Steel

2017-03-28
2017-01-0310
The die wear up to 80,800 hits on a prog-die setup for bare DP1180 steel was investigated in real production condition. In total, 31 die inserts with the combination of 11 die materials and 9 coatings were evaluated. The analytical results of die service life for each insert were provided by examining the evolution of surface wear on inserts and formed parts. The moments of appearance of die defects, propagation of die defects, and catastrophic failure were determined. Moreover, the surface roughness of the formed parts for each die insert was characterized using Wyko NT110 machine. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for flange operations on bare DP 1180 steel and update OEM tooling standards based on the experimental results. The current study provides the guidance for the die material and coating selections in large volume production for next generation AHSSs.
Journal Article

Health Ready Components-Unlocking the Potential of IVHM

2016-04-05
2016-01-0075
Health Ready Components are essential to unlocking the potential of Integrated Vehicle Health Management (IVHM) as it relates to real-time diagnosis and prognosis in order to achieve lower maintenance costs, greater asset availability, reliability and safety. IVHM results in reduced maintenance costs by providing more accurate fault isolation and repair guidance. IVHM results in greater asset availability, reliability and safety by recommending preventative maintenance and by identifying anomalous behavior indicative of degraded functionality prior to detection of the fault by other detection mechanisms. The cost, complexity and effectiveness of the IVHM system design, deployment and support depend, to a great extent, on the degree to which components and subsystems provide the run-time data needed by IVHM and the design time semantic data to allow IVHM to interpret those messages.
Technical Paper

Driver Visibility: Customer Insights and Metric Development

2013-04-08
2013-01-1029
In recent years, there has been a growing interest in driver visibility. This is, in part, due to increasing emphasis placed on design factors influencing visibility such as: aerodynamics, styling, structural stiffness and vehicle packaging. During the development process of a vehicle, it is important to be able to quantify all of these factors. Visibility, however, owing to its sensory nature, has been harder to quantify. As a result, General Motors (GM) has undertaken a study to gain deeper insight into customer perceptions surrounding visibility. Clinics were conducted to help determine the relative importance of different metrics. The paper also explores several new metrics that can help predict customer satisfaction based on vehicle configuration.
Technical Paper

Correlating Measured Combustion Performance with CFD Predicted In-Cylinder Flows for a Spark-Ignition Direct-Injection (SIDI) Engine with Enhanced Charge Motion

2013-04-08
2013-01-1090
A numerical and corresponding experimental study was undertaken to identify the ability to accurately predict combustion performance using our 3-D numerical tools for a direct-injection homogeneous-charge engine. To achieve a significant range of combustion rates, the evaluation was conducted for the engine operating with and without enhanced charge motion. Five charge motion configurations were examined, each having different levels of swirl and tumble flow leading to different turbulence generation and decay characteristics. A detailed CFD analysis provides insight into the in-cylinder flow requirements as well as the accuracy of the submodels. The in-cylinder air-fuel distribution, the mass-averaged swirl and tumble levels along with mean flow and turbulent kinetic energies are calculated throughout the induction and compression processes.
Technical Paper

Application of Insulation Standards to High Voltage Automotive Applications

2013-04-08
2013-01-1528
Insulation coordination requirements for electrical equipment applications are defined in various standards. The standards are defined for application to stationary mains connected equipment, like IT, power supply or industrial equipment. Protection from an electric shock is considered the primary hazard in these standards. These standards have also been used in the design of various automotive components. IEC 60664-1 is an example of the standard. Automobiles are used across the world, in various environments and in varied usage by the customers. Automobiles need to consider possible additional hazards including electric shock. This paper will provide an overview of how to adapt these standards for automotive application in the design of High Voltage (HV) automotive components, including High Voltage batteries and other HV components connected to the battery. The basic definitions from the standards and the principles are applied for usage in automotive applications.
Journal Article

Design Verification of Automotive Controller Models

2013-04-08
2013-01-0428
Model-Based Development processes in the automotive industry typically use high-level modeling languages to build the reference models of embedded controllers. One can use formal verification tools to exhaustively verify these design models against their requirements, ensuring high quality models and a reduction in the cost and effort of functional testing. However, there is a gap, in terms of processes and tools, between the informal requirements and the formal specifications required by the verification tools. In this paper, we propose an approach that tries to bridge this gap by (i) identifying the verifiable requirements through a categorization process, (ii) providing a set of templates to easily express the verifiable requirements, and (iii) generating monitors that can be used as specifications in design verification tools. We demonstrate our approach using the Simulink Design Verifier tool for design verification of Simulink/Stateflow models.
Technical Paper

Feature Based Architecture Design and Functional Partitioning to Subsystems

2012-04-16
2012-01-0011
Vehicle development typically occurs by independently documenting requirements for individual subsystems, then packaging these subsystems into the vehicle and testing the feature operation at a higher level, across multiple subsystems. Many times, this independent development process results in integration problems at the vehicle level, such as incomplete feature execution, unexpected operation and information disconnects. The development team is left to debug and create inefficient patches at the vehicle level due to time constraints and / or planned release dates. Without architecting solutions at the feature level, miscommunication of expected feature operation leads to wasted time, re-work and customer dissatisfaction. While the development of vehicle level technical specifications provide feature expectations at the vehicle level, they do not solve the problem of how this operation is to be applied across multiple systems.
Technical Paper

Methods and Tools for End-to-End Latency Analysis and Optimization of a Dual-Processor Control Module

2012-04-16
2012-01-0029
Automotive HW/SW architectures are becoming increasingly complex to support the deployment of new safety, comfort, and energy-efficiency features. Such architectures include several software tasks (100+), messages (1000+), computational and communication resources (70+ CPUs, 10+ buses), and (smart) sensors and actuators (20+). To cope with the increasing system complexity at lowest development and product costs, highest safety, and fastest time to market, model-based rapid-prototyping development processes are essential. The processes, coupled with optimization steps aimed at reducing the number of software and hardware resources while satisfying the safety requirements, enable reduction of the system complexity and ease downstream testing/validation efforts. This paper describes a novel model-based design exploration and optimization process for the deployment of a set of software tasks on a dual-processor control module implementing a fail-safe strategy.
Journal Article

Methods and Tools for Calculating the Flexibility of Automotive HW/SW Architectures

2012-04-16
2012-01-0005
To cope with the increasing number of advanced features (e.g., smart-phone integration and side-blind zone alert.) being deployed in vehicles, automotive manufacturers are designing flexible hardware architectures which can accommodate increasing feature content with as fewer as possible hardware changes so as to keep future costs down. In this paper, we propose a formal and quantitative definition of flexibility, a related methodology and a tool flow aimed at maximizing the flexibility of an automotive hardware architecture with respect to the features that are of greater importance to the designer. We define flexibility as the ability of an architecture to accommodate future changes in features with no changes in hardware (no addition/replacement of processors, buses, or memories). We utilize an optimization framework based on mixed integer linear programming (MILP) which computes the flexibility of the architecture while guaranteeing performance and safety requirements.
Technical Paper

Development of 3-D Digital Proving Ground Profiles for Use in Virtual Prediction of Vehicle System/Sub-System Loads

2011-04-12
2011-01-0189
The usage of multi-body dynamics tools for the prediction of vehicle system/sub-system loads, has significantly reduced the need to measure vehicle loads at proving grounds. The success of these tools is limited by the quality of the digital representations being used to simulate the physical test roads. The development of these digital roads is not a trivial task due to the large quantity of data and processing required. In the end, the files must be manageable in size, have a globally common format, and be simulation-friendly. The authors present a methodology for the development of high quality 3-dimensional (3-D) digital proving ground profiles. These profiles will be used in conjunction with a multi-body dynamics software package (ADAMS) and the FTire™ model. The authors present a case study below.
Technical Paper

Method and System for Determining the Location of a Lost Vehicle Key Fob

2011-04-12
2011-01-0044
Key fobs, also known as remote keys or remote transmitters, have become a common piece of equipment in today's vehicle, being ubiquitous in every market segment. Once limited to remote locking and unlocking operations, today's key fobs can be used to control many comfort and security features beyond locking and unlocking, such as alarm system operation, vehicle locate, approach lighting, memory seat recall, and remote starting systems. Key fobs are designed to be easy to use as well as easy to carry and transport in personal containers, such as purses, pockets, wallets, and the like. Accordingly, as with other personal effects, key fobs and other portable remote devices can be lost or misplaced or can be otherwise difficult to find. Even with careful tracking of a remote device, children and pets, among other factors, can make location difficult. Moreover, multiple remote devices are often distributed with each vehicle.
Technical Paper

Co-Development of Chevy Volt Tire Properties to Balance Performance and Electric Vehicle Range

2011-04-12
2011-01-0096
As an innovative electric vehicle with some new approaches to energy usage and vehicle performance balance, the Chevy Volt required a special relationship between the OEM and tire supplier community. This paper details this relationship and how advanced tools and technology were leveraged between OEM and supplier to achieve tire component and overall vehicle performance results.
Technical Paper

Voltec Charging System EMC Requirements and Test Methodologies

2011-04-12
2011-01-0742
With the advent of vehicle manufacturer driven on-board charging systems for plug-in and extended range electric vehicles, such as the Chevrolet Volt, important considerations need to be comprehended in both the requirements specified as well as the test methodologies and setups for electromagnetic compatibility (EMC). Typical automotive EMC standards (such as the SAE J551 and SAE J1113 series) that cover 12 volt systems have existed for many years. Additionally, there has been some development in recent years for high voltage EMC for automotive applications. However, on-board charging for vehicles presents yet another challenge in adopting requirements that have typically been in the consumer industry realm and merging those with both the traditional 12 V based system requirements as well as high voltage based systems.
Technical Paper

Experimental Study of NOx Reduction by Passive Ammonia-SCR for Stoichiometric SIDI Engines

2011-04-12
2011-01-0307
As vehicle fuel economy requirements continue to increase it is becoming more challenging and expensive to simultaneously improve fuel consumption and meet emissions regulations. The Passive Ammonia SCR System (PASS) is a novel aftertreatment concept which has the potential to address NOx emissions with application to both lean SI and stoichiometric SI engines. PASS relies on an underfloor (U/F) SCR for storage of ammonia which is generated by the close-coupled (CC) TWCs. For lean SI engines, it is required to operate with occasional rich pulses in order to generate the ammonia, while for stoichiometric application ammonia is passively generated through the toggling of air/fuel ratio. PASS serves as an efficient and cost-effective enhancement to standard aftertreatment systems. For this study, the PASS concept was demonstrated first using lab reactor results which highlight the oxygen tolerance and temperature requirements of the SCR.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Development of a Camera-Based Forward Collision Alert System

2011-04-12
2011-01-0579
Forward Collision Alert (or Forward Collision Warning) systems provide alerts intended to assist drivers in avoiding or mitigating the harm caused by rear-end crashes. These systems currently use front-grille mounted, forward-looking radar devices as the primary sensor. In contrast, Lane Departure Warning (LDW) systems employ forward-looking cameras mounted behind the windshield to monitor lane markings ahead and warn drivers of unintended lane violations. The increasing imaging sensor resolution and processing capability of forward-looking cameras, as well recent important advances in machine vision algorithms, have pushed the state-of-the-art for camera-based features. Consequently, camera-based systems are emerging as a key crash avoidance system component in both a primary and supporting sensing role. There are currently no production vehicles with cameras used as the sole FCA sensing device.
Technical Paper

Impact of Motor Capacitance on Vehicle Electrical System Transients

2011-04-12
2011-01-1009
The electrical architecture of today's automobiles employs a significant number of fractional horsepower motors to control wipers, windows, seats, etc. The typical motors are permanent magnet DC brush-commutated motors, often referred to as BM motors. These BM motors, while simple in design, have the inherent issue of creating short-duration, high-frequency electrical noise (caused by the constant interruption, or commutation, of the motor current). This electrical noise can readily lead to radio reception interference. In order to protect against this risk, a typical solution is to install a radio frequency (RF) filter internal to the motor. This filter generally includes a high-frequency ceramic or metal film capacitor across the motor terminals that connect to the vehicle electrical system.
Technical Paper

Technical Challenges in Future Electrical Architectures

2011-04-12
2011-01-1021
As part of standardizing the global portfolio, General Motors (GM) created an electrical architecture that will support the GM global product feature set. Introduced in 2009, this common electrical architecture is already being applied to multiple platforms in GM's regional engineering centers. The electrical architecture will be updated regularly to address the needs of new features in the automotive market and to take advantage of the latest technology advancements. The functional requirements of these new features result in technology challenges. In addition, many new features may result in challenges to the vehicle electrical architecture or the vehicle development process. The challenges have been evaluated so that needs and initiatives can be better understood.
Technical Paper

CAE - A Strategy for a Large Scale Virtual Vehicle Engineering Factory

2011-04-12
2011-01-1065
For many years, the computer aided math model has been the foundation for lowering cost and reducing time to market for many manufacturing industries. The automotive industry applies a variety of tools and methods to evaluate the expected vehicle performance to a forever expanding set of requirements. These mathematical predictions of performance are then repeated for both a set of design cycles and a multitude of vehicles in the product portfolio. This paper presents a CAE perspective of the unique problems of the large scale virtual vehicle engineering factory and a set of solutions. Different strategies to create the various complex math models required are explored. These strategies include using COTS FEA pre-processers, producing FEA models internal to the CAD tools, as well as custom built tools, macros and process automation tools.
X