Refine Your Search

Topic

Author

Search Results

Technical Paper

Making a Regional Belt Drive Rack Electric Power Steering System Global

2017-11-07
2017-36-0188
An actual trend in the automotive industry is to have global products in order to have economy of scale. This paper presents how a Belt Drive Rack EPS developed for the North American market had to be modified in order to be assembled in a Vehicle sold all around the world. Main technical challenges for achieving that goal were generated from different Architectures, whether electrical or mechanical, used in each vehicle, Packaging issues and Regional Requirements. Main features affected are Database Configuration, Electromagnetic Compatibility, Smooth Road Shake mitigation and Pull Compensation.
Journal Article

Evaluation of Prog-Die Wear Properties on Bare DP1180 Steel

2017-03-28
2017-01-0310
The die wear up to 80,800 hits on a prog-die setup for bare DP1180 steel was investigated in real production condition. In total, 31 die inserts with the combination of 11 die materials and 9 coatings were evaluated. The analytical results of die service life for each insert were provided by examining the evolution of surface wear on inserts and formed parts. The moments of appearance of die defects, propagation of die defects, and catastrophic failure were determined. Moreover, the surface roughness of the formed parts for each die insert was characterized using Wyko NT110 machine. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for flange operations on bare DP 1180 steel and update OEM tooling standards based on the experimental results. The current study provides the guidance for the die material and coating selections in large volume production for next generation AHSSs.
Journal Article

Health Ready Components-Unlocking the Potential of IVHM

2016-04-05
2016-01-0075
Health Ready Components are essential to unlocking the potential of Integrated Vehicle Health Management (IVHM) as it relates to real-time diagnosis and prognosis in order to achieve lower maintenance costs, greater asset availability, reliability and safety. IVHM results in reduced maintenance costs by providing more accurate fault isolation and repair guidance. IVHM results in greater asset availability, reliability and safety by recommending preventative maintenance and by identifying anomalous behavior indicative of degraded functionality prior to detection of the fault by other detection mechanisms. The cost, complexity and effectiveness of the IVHM system design, deployment and support depend, to a great extent, on the degree to which components and subsystems provide the run-time data needed by IVHM and the design time semantic data to allow IVHM to interpret those messages.
Journal Article

Design Verification of Automotive Controller Models

2013-04-08
2013-01-0428
Model-Based Development processes in the automotive industry typically use high-level modeling languages to build the reference models of embedded controllers. One can use formal verification tools to exhaustively verify these design models against their requirements, ensuring high quality models and a reduction in the cost and effort of functional testing. However, there is a gap, in terms of processes and tools, between the informal requirements and the formal specifications required by the verification tools. In this paper, we propose an approach that tries to bridge this gap by (i) identifying the verifiable requirements through a categorization process, (ii) providing a set of templates to easily express the verifiable requirements, and (iii) generating monitors that can be used as specifications in design verification tools. We demonstrate our approach using the Simulink Design Verifier tool for design verification of Simulink/Stateflow models.
Journal Article

Optimal Torque Control for an Electric-Drive Vehicle with In-Wheel Motors: Implementation and Experiments

2013-04-08
2013-01-0674
This paper presents the implementation of an off-line optimized torque vectoring controller on an electric-drive vehicle with four in-wheel motors for driver assistance and handling performance enhancement. The controller takes vehicle longitudinal, lateral, and yaw acceleration signals as feedback using the concept of state-derivative feedback control. The objective of the controller is to optimally control the vehicle motion according to the driver commands. Reference signals are first calculated using a driver command interpreter to accurately interpret what the driver intends for the vehicle motion. The controller then adjusts the braking/throttle outputs based on discrepancy between the vehicle response and the interpreter command.
Journal Article

A Computational Method for Efficient Hub Offset Comparisons with Deflected-Disc Dampers

2013-04-08
2013-01-1357
With deflected-disc dampers, digressive force-velocity shapes are achieved via the combined effects of disc stack stiffness and hub-offset. The degree of digressiveness can be adjusted to alter vehicle performance by changing the proportion of these parameters. Optimizing this relationship can yield substantial vehicle performance improvements, but the time consuming iterative process of developing a new disc stack for each hub-offset discourages experimentation. To enable more efficient digressiveness comparisons, a regression-based computational method has been developed which converts disc stack stiffness from one hub-offset to other offsets directly, without iteration. Once an initial disc stack for one offset has been tuned by traditional methods, stacks for other offsets can be calculated that maintain overall damper control.
Technical Paper

Driver Visibility: Customer Insights and Metric Development

2013-04-08
2013-01-1029
In recent years, there has been a growing interest in driver visibility. This is, in part, due to increasing emphasis placed on design factors influencing visibility such as: aerodynamics, styling, structural stiffness and vehicle packaging. During the development process of a vehicle, it is important to be able to quantify all of these factors. Visibility, however, owing to its sensory nature, has been harder to quantify. As a result, General Motors (GM) has undertaken a study to gain deeper insight into customer perceptions surrounding visibility. Clinics were conducted to help determine the relative importance of different metrics. The paper also explores several new metrics that can help predict customer satisfaction based on vehicle configuration.
Technical Paper

Correlating Measured Combustion Performance with CFD Predicted In-Cylinder Flows for a Spark-Ignition Direct-Injection (SIDI) Engine with Enhanced Charge Motion

2013-04-08
2013-01-1090
A numerical and corresponding experimental study was undertaken to identify the ability to accurately predict combustion performance using our 3-D numerical tools for a direct-injection homogeneous-charge engine. To achieve a significant range of combustion rates, the evaluation was conducted for the engine operating with and without enhanced charge motion. Five charge motion configurations were examined, each having different levels of swirl and tumble flow leading to different turbulence generation and decay characteristics. A detailed CFD analysis provides insight into the in-cylinder flow requirements as well as the accuracy of the submodels. The in-cylinder air-fuel distribution, the mass-averaged swirl and tumble levels along with mean flow and turbulent kinetic energies are calculated throughout the induction and compression processes.
Technical Paper

Determination of Vehicle Frontal Area Using Image Processing

2013-04-08
2013-01-0203
The projected frontal area of a vehicle has a significant impact on aerodynamic drag, and thus is an important parameter, for vehicle development, benchmarking, and modeling. However, determining vehicle frontal area can be tedious, time consuming, expensive, or inaccurate. Existing methods include analysis of engineering drawings, vehicle projections, 3D scanners, planimeter measurements from photographs, and estimations using vehicle dimensions. Currently accepted approximation methods can be somewhat unreliable. This study focuses on introducing a method to find vehicle frontal area using digital images and subtraction functions via MATLABs' Image Processing Toolbox. In addition to an overview of the method, this paper describes several variables that were examined to optimize and improve the process such as camera position, surface glare, and vehicle shadow effects.
Technical Paper

Application of Insulation Standards to High Voltage Automotive Applications

2013-04-08
2013-01-1528
Insulation coordination requirements for electrical equipment applications are defined in various standards. The standards are defined for application to stationary mains connected equipment, like IT, power supply or industrial equipment. Protection from an electric shock is considered the primary hazard in these standards. These standards have also been used in the design of various automotive components. IEC 60664-1 is an example of the standard. Automobiles are used across the world, in various environments and in varied usage by the customers. Automobiles need to consider possible additional hazards including electric shock. This paper will provide an overview of how to adapt these standards for automotive application in the design of High Voltage (HV) automotive components, including High Voltage batteries and other HV components connected to the battery. The basic definitions from the standards and the principles are applied for usage in automotive applications.
Journal Article

Methods and Tools for Calculating the Flexibility of Automotive HW/SW Architectures

2012-04-16
2012-01-0005
To cope with the increasing number of advanced features (e.g., smart-phone integration and side-blind zone alert.) being deployed in vehicles, automotive manufacturers are designing flexible hardware architectures which can accommodate increasing feature content with as fewer as possible hardware changes so as to keep future costs down. In this paper, we propose a formal and quantitative definition of flexibility, a related methodology and a tool flow aimed at maximizing the flexibility of an automotive hardware architecture with respect to the features that are of greater importance to the designer. We define flexibility as the ability of an architecture to accommodate future changes in features with no changes in hardware (no addition/replacement of processors, buses, or memories). We utilize an optimization framework based on mixed integer linear programming (MILP) which computes the flexibility of the architecture while guaranteeing performance and safety requirements.
Technical Paper

Methods and Tools for End-to-End Latency Analysis and Optimization of a Dual-Processor Control Module

2012-04-16
2012-01-0029
Automotive HW/SW architectures are becoming increasingly complex to support the deployment of new safety, comfort, and energy-efficiency features. Such architectures include several software tasks (100+), messages (1000+), computational and communication resources (70+ CPUs, 10+ buses), and (smart) sensors and actuators (20+). To cope with the increasing system complexity at lowest development and product costs, highest safety, and fastest time to market, model-based rapid-prototyping development processes are essential. The processes, coupled with optimization steps aimed at reducing the number of software and hardware resources while satisfying the safety requirements, enable reduction of the system complexity and ease downstream testing/validation efforts. This paper describes a novel model-based design exploration and optimization process for the deployment of a set of software tasks on a dual-processor control module implementing a fail-safe strategy.
Technical Paper

Feature Based Architecture Design and Functional Partitioning to Subsystems

2012-04-16
2012-01-0011
Vehicle development typically occurs by independently documenting requirements for individual subsystems, then packaging these subsystems into the vehicle and testing the feature operation at a higher level, across multiple subsystems. Many times, this independent development process results in integration problems at the vehicle level, such as incomplete feature execution, unexpected operation and information disconnects. The development team is left to debug and create inefficient patches at the vehicle level due to time constraints and / or planned release dates. Without architecting solutions at the feature level, miscommunication of expected feature operation leads to wasted time, re-work and customer dissatisfaction. While the development of vehicle level technical specifications provide feature expectations at the vehicle level, they do not solve the problem of how this operation is to be applied across multiple systems.
Technical Paper

Model-Based Analysis and Optimization of Turbocharged Diesel Engines with a Variable Geometry Compressor and Turbine System

2012-04-16
2012-01-0716
In the last few years, the application of downsizing and turbocharging to internal combustion engines has considerably increased due to the proven potential of this technology to increase engine efficiency. Variable geometry turbines have been largely adopted to optimize the exhaust energy recovery over a large operating range. Two-stage turbocharger systems have also been studied as a solution to improve engine low-end torque and efficiency, with the first units currently available on the market. However, the compressor technology is today still based on fixed geometry machines, which are sized to efficiently operate at the maximum air flow and therefore lead to poor efficiency values at low air flow conditions. Furthermore, the surge limits prevents the full capabilities of VGT systems to increase the boosting at low engine speed.
Technical Paper

Test Method for Seat Wrinkling and Bagginess

2012-04-16
2012-01-0509
This study evaluates utilizing an accelerated test method that correlates customer interaction with a vehicle seat where bagginess and wrinkling is produced. The evaluation includes correlation from warranty returns as well as test vehicle results for test verification. Consumer metrics will be discussed within this paper with respect to potential application of this test method, including but not limited to JD Power ratings. The intent of the test method is to aid in establishing appropriate design parameters of the seat trim covers and to incorporate appropriate design measures such as tie downs and lamination. This test procedure was utilized in a Design for Six Sigma (DFSS) project as an aid in optimizing seat parameters influencing trim cover performance using a Design of Experiment approach.
Journal Article

Structural Optimization for Vehicle Dynamics Loadcases

2011-04-12
2011-01-0058
As mass reduction becomes an increasingly important enabler for fuel economy improvement, having a robust structural development process that can comprehend Vehicle Dynamics-specific requirements is correspondingly important. There is a correlation between the stiffness of the body structure and the performance of the vehicle when evaluated for ride and handling. However, an unconstrained approach to body stiffening will result in an overly-massive body structure. In this paper, the authors employ loads generated from simulation of quasi-static and dynamic vehicle events in ADAMS, and exercise structural finite element models to recover displacements and deflected shapes. In doing so, a quantitative basis for considering structural vehicle dynamics requirements can be established early in the design/development process.
Journal Article

Boundary Condition Effect on the Correlation of an Acoustic Finite Element Passenger Compartment Model

2011-04-12
2011-01-0506
Three different acoustic finite element models of an automobile passenger compartment are developed and experimentally assessed. The three different models are a traditional model, an improved model, and an optimized model. The traditional model represents the passenger and trunk compartment cavities and the coupling between them through the rear seat cavity. The improved model includes traditional acoustic models of the passenger and trunk compartments, as well as equivalent-acoustic finite element models of the front and rear seats, parcel shelf, door volumes, instrument panel, and trunk wheel well volume. An optimized version of the improved acoustic model is developed by modifying the equivalent-acoustic properties. Modal analysis tests of a vehicle were conducted using loudspeaker excitation to identify the compartment cavity modes and sound pressure response to 500 Hz to assess the accuracy of the acoustic models.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Development of a Camera-Based Forward Collision Alert System

2011-04-12
2011-01-0579
Forward Collision Alert (or Forward Collision Warning) systems provide alerts intended to assist drivers in avoiding or mitigating the harm caused by rear-end crashes. These systems currently use front-grille mounted, forward-looking radar devices as the primary sensor. In contrast, Lane Departure Warning (LDW) systems employ forward-looking cameras mounted behind the windshield to monitor lane markings ahead and warn drivers of unintended lane violations. The increasing imaging sensor resolution and processing capability of forward-looking cameras, as well recent important advances in machine vision algorithms, have pushed the state-of-the-art for camera-based features. Consequently, camera-based systems are emerging as a key crash avoidance system component in both a primary and supporting sensing role. There are currently no production vehicles with cameras used as the sole FCA sensing device.
Journal Article

Adjoint Method for Aerodynamic Shape Improvement in Comparison with Surface Pressure Gradient Method

2011-04-12
2011-01-0151
Understanding the flow characteristics and, especially, how the aerodynamic forces are influenced by the changes in the vehicle body shape, are very important in order to improve vehicle aerodynamics. One specific goal of aerodynamic shape optimization is to predict the local shape sensitivities for aerodynamic forces. The availability of a reliable and efficient sensitivity analysis method will help to reduce the number of design iterations and the aerodynamic development costs. Among various shape optimization methods, the Adjoint Method has received much attention as an efficient sensitivity analysis method for aerodynamic shape optimization because it allows the computation of sensitivity information for a large number of shape parameters simultaneously.
X