Refine Your Search

Topic

Author

Search Results

Journal Article

Engine Diagnostics Using Acoustic Emissions Sensors

2016-04-05
2016-01-0639
Engine acoustics measured by microphones near the engine have been used in controlled laboratory settings for combustion feedback and even combustion phasing control, but the use of these techniques in a vehicle where many other noise sources exist is problematic. In this study, surface-mounted acoustic emissions sensors are embedded in the block of a 2.0L turbocharged GDI engine, and the signal is analyzed to identify useful feedback features. The use of acoustic emissions sensors, which have a very high frequency response and are commonly used for detecting material failures for health monitoring, including detecting gear pitting and ring scuffing on test stands, enables detection of acoustics both within the range of human hearing and in the ultrasonic spectrum. The high-speed acoustic time-domain data are synchronized with the crank-angle-domain combustion data to investigate the acoustic emissions response caused by various engine events.
Journal Article

Experimental and Numerical Investigations of Close-Coupled Pilot Injections to Reduce Combustion Noise in a Small-Bore Diesel Engine

2015-04-14
2015-01-0796
A pilot-main injection strategy is investigated for a part-load operating point in a single cylinder optical Diesel engine. As the energizing dwell between the pilot and main injections decreases below 200 μs, combustion noise reaches a minimum and a reduction of 3 dB is possible. This decrease in combustion noise is achieved without increased pollutant emissions. Injection schedules employed in the engine are analyzed with an injection analyzer to provide injection rates for each dwell tested. Two distinct injection events are observed even at the shortest dwell tested; rate shaping of the main injection occurs as the dwell is adjusted. High-speed elastic scattering imaging of liquid fuel is performed in the engine to examine initial liquid penetration rates.
Journal Article

Development of the Combustion System for General Motors' High-Efficiency Range Extender Ecotec Small Gas Engine

2015-04-14
2015-01-1272
General Motors has developed an all-new Ecotec 1.5 L range extender engine for use in the 2016 next generation Voltec propulsion system. This engine is part of a new Ecotec family of small displacement gasoline engines introduced in the 2015 model year. Major enhancements over the range extender engine in the current generation Voltec propulsion system include the adoption of direct injection (DI), cooled external exhaust gas recirculation (EGR), and a high 12.5:1 geometric compression ratio (CR). Additional enhancements include the adoption of high-authority phasers on both the intake and exhaust camshafts, and an integrated exhaust manifold (IEM). The combination of DI with cooled EGR has enabled significant thermal efficiency gains over the 1.4 L range extender engine in the current generation Voltec propulsion system at high engine loads.
Journal Article

Study of the Motion of Floating Piston Pin against Pin Bore

2013-04-08
2013-01-1215
One of the major problems that the automotive industry faces is reducing friction to increase efficiency. Researchers have shown that 30% of the fuel energy was consumed to overcome the friction forces between the moving parts of any automobile, Holmberg et al. [1]. The interface of the piston pin and pin bore is one of the areas that generate high friction under severe working conditions of high temperature and lack of lubrication. In this research, experimental investigation and theoretical simulation have been carried out to analyze the motion of the floating pin against pin bore. In the experimental study, the focus was on analyzing the floating pin motion by using a bench test rig to simulate the floating pin motion in an internal combustion engine. A motion data acquisition system was developed to capture and record the pin motion. Thousands of images were recorded and later analyzed by a code written by MATLAB.
Technical Paper

An Investigation of Diesel EGR Cooler Fouling and Effectiveness Recovery

2013-04-08
2013-01-0533
Diesel engine developers are continually striving to reduce harmful NOx emissions through various calibration and hardware strategies. One strategy being implemented in production Diesel engines involves utilizing cooled exhaust gas recirculation (EGR). Although there is a significant NOx reduction potential by utilizing cooled EGR, there are also several issues associated with it, such as EGR cooler fouling and a reduction in cooler effectiveness that can occur over time. The exact cause of these issues and many others related to cooler fouling are not clearly understood. One such unanswered issue or phenomenon that has been observed in both field tested and lab tested EGR coolers is that of a recovery in EGR cooler effectiveness after a shutdown or after cycling between various conditions.
Technical Paper

Visualization and Analysis of Condensation in Exhaust Gas Recirculation Coolers

2013-04-08
2013-01-0540
Cooled exhaust gas recirculation (EGR) is widely used in diesel engines to control engine-out NOx (oxides of nitrogen) emissions. A portion of the exhaust gases is re-circulated into the intake manifold of the engine after cooling it through a heat exchanger. EGR cooler heat exchangers, however, tend to lose efficiency and have increased pressure drop as deposit forms on the heat exchanger surface due to transport of soot particles and condensing species to the cooler walls. In this study, condensation of water vapor and hydrocarbons at the exit of the EGR cooler was visualized using a fiberscope coupled to a camera equipped with a complementary metal oxide semiconductor (CMOS) color sensor. A multi-cylinder diesel engine was used to produce a range of engine-out hydrocarbon concentrations. Both surface and bulk gas condensation were observed with the visualization setup over a range of EGR cooler coolant temperatures.
Technical Paper

Development of the Combustion System for the General Motors Fifth Generation “Small Block” Engine Family

2013-04-08
2013-01-1732
The fifth generation of General Motor's “Small Block” 90-degree V engine family has been developed with a totally new combustion system. This system employs direct fuel injection (DI) and carefully architected in-cylinder flow field development in order to significantly improve all aspects of combustion system performance. Efficiency improvements stem from increased compression ratio, greatly improved dilution tolerance, and excellent knock resistance. The asymmetric, 2-valve (2V) layout of the “Small Block” engine presented unique challenges in developing the combustion system, but also offered unusual opportunities for an elegant solution while retaining the traditional “Small Block” attributes of packaging efficiency and power density.
Technical Paper

Experimental Investigation on the Effects on Performance and Emissions of an Automotive Euro 5 Diesel Engine Fuelled with B30 from RME and HVO

2013-04-08
2013-01-1679
The effects of using blended renewable diesel fuel (30% vol.), obtained from Rapeseed Methyl Ester (RME) and Hydrotreated Vegetable Oil (HVO), in a Euro 5 small displacement passenger car diesel engine have been evaluated in this paper. The hydraulic behavior of the common rail injection system was verified in terms of injected volume and injection rate with both RME and HVO blends fuelling in comparison with commercial diesel. Further, the spray obtained with RME B30 was analyzed and compared with diesel in terms of global shape and penetration, to investigate the potential differences in the air-fuel mixing process. Then, the impact of a biofuel blend usage on engine performance at full load was first analyzed, adopting the same reference calibration for all the tested fuels.
Technical Paper

Correlating Measured Combustion Performance with CFD Predicted In-Cylinder Flows for a Spark-Ignition Direct-Injection (SIDI) Engine with Enhanced Charge Motion

2013-04-08
2013-01-1090
A numerical and corresponding experimental study was undertaken to identify the ability to accurately predict combustion performance using our 3-D numerical tools for a direct-injection homogeneous-charge engine. To achieve a significant range of combustion rates, the evaluation was conducted for the engine operating with and without enhanced charge motion. Five charge motion configurations were examined, each having different levels of swirl and tumble flow leading to different turbulence generation and decay characteristics. A detailed CFD analysis provides insight into the in-cylinder flow requirements as well as the accuracy of the submodels. The in-cylinder air-fuel distribution, the mass-averaged swirl and tumble levels along with mean flow and turbulent kinetic energies are calculated throughout the induction and compression processes.
Technical Paper

Experimental Investigation of Light-Medium Load Operating Sensitivity in a Gasoline Compression Ignition (GCI) Light-Duty Diesel Engine

2013-04-08
2013-01-0896
The light-medium load operating range (4-7 bar net IMEP) presents many challenges for advanced low temperature combustion strategies utilizing low cetane fuels (specifically, 87-octane gasoline) in light-duty, high-speed engines. The overly lean overall air-fuel ratio (Φ≺0.4) sometimes requires unrealistically high inlet temperatures and/or high inlet boost conditions to initiate autoignition at engine speeds in excess of 1500 RPM. The objective of this work is to identify and quantify the effects of variation in input parameters on overall engine operation. Input parameters including inlet temperature, inlet pressure, injection timing/duration, injection pressure, and engine speed were varied in a ~0.5L single-cylinder engine based on a production General Motors 1.9L 4-cylinder high-speed diesel engine.
Journal Article

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-04-16
2012-01-1008
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium-size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Journal Article

Investigation of the Load Limits and Emissions of a Naturally-Aspirated Direct-Injection Diesel Engine

2012-04-16
2012-01-0686
Cost and robustness are key factors in the design of diesel engines for low power density applications. Although compression ignition engines can produce very high power density output with turbocharging, naturally aspirated (NA) engines have advantages in terms of reduced cost and avoidance of system complexity. This work explores the use of direct injection (DI) and exhaust gas recirculation (EGR) in NA engines using experimental data from a single-cylinder research diesel engine. The engine was operated with a fixed atmospheric intake manifold pressure over a map of speed, air-to-fuel ratio, EGR, fuel injection pressure and injection timing. Conventional gaseous engine-out emissions were measured along with high speed cylinder pressure data to show the load limits and resulting emissions of the NA-DI engine studied. Well known reductions in NOX with increasing levels of EGR were confirmed with a corresponding loss in peak power output.
Journal Article

Detailed Simulations of Stratified Ignition and Combustion Processes in a Spray-Guided Gasoline Engine using the SparkCIMM/G-Equation Modeling Framework

2012-04-16
2012-01-0132
Recently, high-speed optical imaging data for a single operating point of a spray-guided gasoline engine has, along with the flamelet model and the G-equation theory, enabled the development of the new spark-ignition model SparkCIMM. Within its framework, detailed chemistry flamelet models capture the experimental feature of multiple localized ignition events along the excessively stretched and restriking spark channel, as well as the observations of non-spherical highly corrugated early turbulent flame fronts. The developed flamelet models account for the substantial turbulent fluctuations in equivalence ratio and enthalpy present under spray-guided conditions. A non-unity Lewis number formulation captures the deficient species diffusion into the highly curved flame reaction zone.
Journal Article

Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

2012-04-16
2012-01-1131
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline injected using a triple-pulse strategy in the low temperature combustion (LTC) regime is presented. This work aims to extend the operation ranges for a light-duty diesel engine, operating on gasoline, that have been identified in previous work via extended controllability of the injection process. The single-cylinder engine (SCE) was operated at full load (16 bar IMEP, 2500 rev/min) and computational simulations of the in-cylinder processes were performed using a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion chosen to match ignition characteristics of the gasoline fuel used for the SCE experiments.
Technical Paper

Analysis of Diesel Injector Nozzle Flow Number Impact on Emissions and Performance of a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0891
The present paper describes the results of a research project aimed at studying the impact of nozzle flow number on a Euro5 automotive diesel engine, featuring Closed-Loop Combustion Control. In order to optimize the trade-offs between fuel economy, combustion noise, emissions and power density for the next generation diesel engines, general trend among OEMs is lowering nozzle flow number and, as a consequence, nozzle hole size. In this context, three nozzle configurations have been characterized on a 2.0L Euro5 Common Rail Diesel engine, coupling experimental activities performed on multi-cylinder and optical single cylinder engines to analysis on spray bomb and injector test rigs. More in detail, this paper deeply describes the investigation carried out on the multi-cylinder engine, specifically devoted to the combustion evolution and engine performance analysis, varying the injector flow number.
Technical Paper

Model-Based Analysis and Optimization of Turbocharged Diesel Engines with a Variable Geometry Compressor and Turbine System

2012-04-16
2012-01-0716
In the last few years, the application of downsizing and turbocharging to internal combustion engines has considerably increased due to the proven potential of this technology to increase engine efficiency. Variable geometry turbines have been largely adopted to optimize the exhaust energy recovery over a large operating range. Two-stage turbocharger systems have also been studied as a solution to improve engine low-end torque and efficiency, with the first units currently available on the market. However, the compressor technology is today still based on fixed geometry machines, which are sized to efficiently operate at the maximum air flow and therefore lead to poor efficiency values at low air flow conditions. Furthermore, the surge limits prevents the full capabilities of VGT systems to increase the boosting at low engine speed.
Technical Paper

Investigation of Diesel Injector Nozzle Flow Number Impact on Spray Formation and Combustion Evolution by Optical Diagnostics

2012-04-16
2012-01-0701
The present paper describes an experimental investigation over the impact of diesel injector nozzle flow number on spray formation and combustion evolution for a modern EURO5 light-duty diesel engine. The analysis has been carried out by coupling the investigations in non evaporative spray bomb to tests in optical single cylinder engine in firing conditions. The research activity, which is the result of a collaborative project between Istituto Motori Napoli - CNR and GM Powertrain Europe, is devoted to understanding the basic operating behaviour of low flow number nozzles which are showing promising improvements in diesel engine behaviour at partial load. In fact, because of the compelling need to push further emission, efficiency, combustion noise and power density capabilities of the last-generation diesel engines, the combination of high injection pressure fuel pumps and low flow number nozzles is general trend among major OEMs.
Technical Paper

Impact of Biodiesel on Particle Emissions and DPF Regeneration Management in a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0839
Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.
Technical Paper

Fuel Effects on Combustion and Emissions of a Direct-Injection Diesel Engine Operating at Moderate to High Engine Speed and Load

2012-04-16
2012-01-0863
It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. Data are examined from a direct-injection single-cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR.
Technical Paper

Ignition and Combustion Simulations of Spray-Guided SIDI Engine using Arrhenius Combustion with Spark-Energy Deposition Model

2012-04-16
2012-01-0147
An Arrhenius combustion model (chemically controlled model) with a spark-energy deposition model having a moving spherical ignition source in the Converge CFD code is validated with a single-cylinder spray-guided SIDI engine at idle-like lean-burn operating conditions with both single- and double-pulse fuel injection. It was found that a fine mesh is required for accurate solving of "laminar-flame" like reaction front propagation. A reduced chemistry mechanism for iso-octane is used as gasoline surrogate. The effects of spark advance were studied by the simulation and experiment. The results show that this modeling approach can provide reasonable predictions for the spray-guided SIDI engine with single- and double-pulse injections.
X