Refine Your Search

Topic

Author

Search Results

Technical Paper

Rollover Sensor Signature Test Development

2007-04-16
2007-01-0375
Although rollover crashes represent a small fraction (approximately 3%) of all motor vehicle crashes, they account for roughly one quarter of crash fatalities to occupants of cars, light trucks, and vans (NHTSA Traffic Safety Facts, 2004). Therefore, the National Highway Traffic Safety Administration (NHTSA) has identified rollover injuries as one of its safety priorities. Motor vehicle manufacturers are developing technologies to reduce the risk of injury associated with rollover collisions. This paper describes the development by General Motors Corporation (GM) of a suite of laboratory tests that can be used to develop sensors that can deploy occupant protection devices like roof rail side air bags and pretensioners in a rollover as well as a discussion of the challenges of conducting this suite of tests.
Technical Paper

Multiple Solutions by Performance Band: An Effective Way to Deal with Modeling Error

2004-03-08
2004-01-1688
Robust optimization usually requires numerous functional evaluations, which is not feasible when the functional evaluation is time-consuming. Examples in automobile industry include crash worthiness/safety and fatigue life simulations. In practice, a response surface model (RSM) is often used as a surrogate to the CAE model, so that robust optimization can be carried out. However, if the error in the RSM is significant, the solution based on the RSM can be invalid. This paper proposes a method of finding multiple candidate solutions, all of which have similar predicted performances. This approach is effective in finding the close-to-optimum solutions when the model has error, and providing design alternatives. Examples are provided to illustrate the method.
Technical Paper

Ncap-Field Relevance of the Metrics

2001-06-04
2001-06-0170
By design, frontal New Car Assessment Program (NCAP) tests focus on a narrow portion of the spectrum of field crash events. A simple, high level parsing of towaway crashes from NHTSA's National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) files shows that only a small fraction of occupants (but a somewhat larger portion of their harm as measured by ISS) find themselves in crash circumstances remotely similar to NCAP crash conditions. Looking only at seat location, area of damage, direction of force, distribution of damage, and estimated delta-V filters significantly restricts the relevance of NCAP even before critical factors like belt use and vehicle crash partner are considered. Given the limited scope of frontal NCAP it should not be surprising that it has limited usefulness in discriminating among various vehicles' overall performance in the field.
Technical Paper

The Application of Direct Body Excitation Toward Developing a Full Vehicle Objective Squeak and Rattle Metric

2001-04-30
2001-01-1554
In order to engineer Squeak & Rattle (S&R) free vehicles it is essential to develop an objective measurement method to compare and correlate with customer satisfaction and subjective S&R assessments. Three methods for exciting S&Rs -type surfaces. Excitation methods evaluated were road tests over S&R surfaces, road simulators, and direct body excitation (DBE). The principle of DBE involves using electromagnetic shakers to induce controlled, road-measured vibration into the body, bypassing the tire patch and suspension. DBE is a promising technology for making objective measurements because it is extremely quiet (test equipment noise does not mask S&Rs), while meeting other project goals. While DBE is limited in exposing S&Rs caused by body twist and suspension noises, advantages include higher frequency energy owing to electro-dynamic shakers, continuous random excitation, lower capital cost, mobility, and safety.
Technical Paper

Child Occupant Safety - What Might We Expect

2000-11-01
2000-01-C039
The air bag safety issues became evident in 1995 and other factors have conjoined to change the climate regarding motor vehicle safety. Traditionally, motor vehicle safety issues have been evaluated based upon the effects upon average adult males. The new climate requires consideration of the effects on persons of differing size and gender. By including consideration of children and women, rulemaking and the applied technologies are able to better optimize safety than is the case when rules are focused only on the average adult male. Automotive electronics serves a key role in the migration from a one-size-fits- all protection to a more customized protection for a variety of occupants. The enhancements have been the most prominent in the area of sensing, be it the sensing and characterization of the crash itself, or the sensing and characterization of occupants in the vehicle.
Technical Paper

Refinement and Verification of the Structural Stress Method for Fatigue Life Prediction of Resistance Spot Welds Under Variable Amplitude Loads

2000-10-03
2000-01-2727
The work presented here builds on the practical and effective spot weld fatigue life prediction method, the structural stress method (SSM), that was developed at Stanford University. Constant amplitude loading tests for various spot weld joint configurations have been conducted and the SSM has been shown to accurately predict fatigue life. In this paper refinements to the structural stress approach are first presented, including a variable amplitude fatigue life prediction method based on the SSM and Palmgren-Miner's rule. A test matrix was designed to study the fatigue behavior of spot welds under tensile shear loading conditions. Constant amplitude tests under different R-ratios were performed first to obtain the necessary material properties. Variable amplitude tests were then performed for specimens containing single and multiple welds.
Technical Paper

An Economic and Environmental Life Cycle Evaluation of 100% Regrind ABS for Automotive Parts

1998-11-30
982196
The use of regrind acrylonitrile-butadiene-styrene (ABS) for automotive parts and components results in two types of financial savings. The first is the shared monetary savings between General Motors and the molder for the difference in the virgin resin price versus price of the ABS regrind. The second is a societal energy savings seen in the life cycle of virgin ABS versus reground ABS. An added benefit is the preservation of natural resources used to produce virgin ABS.
Technical Paper

Biomechanical Analysis of Indy Race Car Crashes

1998-11-02
983161
This paper describes the results of an ongoing project in the GM Motorsports Safety Technology Research Program to investigate Indianapolis-type (Indy car) race car crashes using an on-board impact recorder as the primary data collection tool. The paper discusses the development of specifications for the impact-recording device, the selection of the specific recorder and its implementation on a routine basis in Indy car racing. The results from incidents that produced significant data (crashes with peak decelerations above 20 G) during the racing seasons from 1993 through the first half of 1998 are summarized. The focus on Indy car crashes has proven to provide an almost laboratory-like setting due to the similarity of the cars and to the relative simplicity of the crashes (predominantly planar crashes involving single car impacts against well-defined impact surfaces).
Technical Paper

LS-DYNA3D Finite Element Model of Side Impact Dummy SID

1997-04-08
971525
Side impact dummy (SID) is a human-like test device used in the National Highway Transportation Safety Administration (NHTSA) mandated side impact test of vehicles sold in the USA. A finite element model of SID has been developed at GM as a part of a project to simulate the side impact test. The objective is to better predict physical test results by replacing traditional rigid-body lumped parameter models with a finite element model. The project included, besides mesh generation, the development of new LS-DYNA3D constitutive models for rubber and foam-like materials, and enhancements of contact interface and other algorithms. This paper describes the GM SID finite element model and its performance in side impact test simulations.
Technical Paper

Numerical Simulation of a Vehicle Side Impact Test: Development. Application and Design Iterations

1996-02-01
960101
This paper describes a numerical simulation technique applicable to the FMVSS 214 side impact test through the use of the finite element method (FEM) technology. The paper outlines the development of the side impact dummy (SID), moving deformable barrier (MDB) and the test vehicle FEM models, as well as the development of new advanced constitutive models of materials and algorithms in LS-DYNA3D which are related to the topic. Presented in the paper are some initial simulation problems which were encountered and solved, as well as the correlation of the simulation data to the physical test.
Technical Paper

Significance of Intersection Crashes for Older Drivers

1996-02-01
960457
As the driving population ages, there is a need to understand the accident patterns of older drivers. Previous research has shown that side impact collisions, usually at an intersection, are a serious problem for the older driver in terms of injury outcome. This study compares the frequency of side impact, intersection collisions of different driver age groups using state and national police-reported accident data as well as an in-depth analysis of cases from a fatal accident study. All data reveal that the frequency of intersection crashes increases with driver age. The state and national data show that older drivers have an increase frequency of intersection crashes involving vehicles crossing paths prior to the collision compared to their involvement in all crash types. When taking into account traffic control devices at an intersection, older drivers have the greatest involvement of multiple vehicle crashes at a signed intersection.
Technical Paper

Crash Causation: A Case Study of Fatal Accident Circumstances and Configurations

1996-02-01
960458
The causes for 131 fatal crashes of lap-shoulder belted occupants were analyzed for crash causation and avoidance opportunities. Fourteen crash scenarios were determined to depict the situation and circumstance of the accidents. Each scenario is discussed in relation to driver age, actions, behavior, errors and aggressiveness, as well as crash type and other factors influencing the crash. Nearly a third of crashes involved a rapid, unpredictable onset by reckless action or mistake of another driver. The remainder were caused by the driver of the case-vehicle. Some were single vehicle crashes primarily related to excessive speed, aggressive driving, and drifting out of lane. The others were multi-vehicle crashes due primarily to inadvertent errors. The most common errors were right-of-way violations at an intersection, loss of control on wet roads, impact of a stationary vehicle, and lane changing errors.
Technical Paper

Fatal Crashes of Female Drivers Wearing Safety Belts

1996-02-01
960459
Fatal crash circumstances for 48 belted female drivers were studied in-depth and compared to those of 83 belted male drivers in a similar population of vehicles. Women had a higher incidence of crashes on slippery roads, during lane changes and passing maneuvers than men who had a higher rate of aggressive driving and speed related crashes (χ2 = 10.47, p < 0.001). Driver-side damage was significantly more frequent in female than male crashes (χ2 = 5.74, p < 0.025) and women had a higher fraction of side impacts (45.9% v 31.4%) and crashes during daylight (87.0% v 72.3%, χ2 = 3.65, p < 0.05) than men. Women also had a higher fraction of potentially avoidable crashes than men (57.5% v 39.0%) and a lower involvement related to aggressive driving (10.6% v 25.6%). These differences were statistically significant (χ2 = 5.41, p < 0.025).
Technical Paper

Biofidelity and Injury Assessment in Eurosid I and Biosid

1995-11-01
952731
Side impact pendulum tests were conducted on Eurosid I and Biosid to assess the biofidelity of the thorax, abdomen and pelvis, and determine injury tolerance levels. Each body region was impacted at 4.5, 6.7, and 9.4 m/s using test conditions which duplicate cadaver impacts with a 15 cm flat-circular 23.4 kg rigid mass. The cadaver database establishes human response and injury risk assessment in side impact. Both dummies showed better biofidelity when compared to the lowest-speed cadaver response corridor. At higher speeds, peak force was substantially higher. The average peak contact force was 1.56 times greater in Biosid and 2.19 times greater in Eurosid 1 than the average cadaver response. The Eurosid I abdomen had the most dissimilar response and lacks biofidelity. Overall, Biosid has better biofidelity than Eurosid I with an average 21% lower peak load and a closer match to the duration of cadaver impact responses for the three body regions.
Technical Paper

Evaluation of the Hybrid III Dummy Interactions with Air Bag in Frontal Crash by Finite Element Simulation

1995-11-01
952705
A deformable finite element dummy model was used to simulate air bag interaction with in-position passenger side occupants in frontal vehicle crash. This dummy model closely simulates the Hybrid III hardware with respect to geometry, mass, and material properties. Test data was used to evaluate the validity of the model. The calculated femur loads, chest acceleration and head acceleration were in good agreement with the test data. A semi-rigid dummy model (with rigid chest) was derived from the deformable dummy to improve turnaround time. Simulation results using the semi-rigid dummy model were also in reasonable agreement with the test data. For comparison purpose, simulations were also performed using PAMCVS, a hybrid code which couples the finite element code PAMCRASH with the rigid body occupant code. The deformable dummy model predicted better chest acceleration than the other two models.
Technical Paper

Life Cycle Management in the Auto Manufacturing Industry - A Report from President Clinton's Council on Sustainable Development Auto Team

1995-10-01
951871
An assessment of automobile painting at General Motor's Lake Orion, Michigan, USA assembly facility from a life cycle perspective was conducted. The Orion Facility produces the new Oldsmobile Aurora and Buick Riviera models. Improvements in on-site pollution prevention, energy conservation and regulatory barriers to technology innovation were identified. The environmental implications of auto body substrate material choice were analyzed. A life cycle inventory framework was developed for paint suppliers and other parts of the auto painting life cycle. An Alternative Regulatory System was proposed for the entire U.S. auto industry that will, if implemented, facilitate the integration of environmental management into core business strategies and planning.
Technical Paper

Crashworthiness Simulation, Design and Development of Cross-Car Stiffener Subsystem

1995-04-01
951083
The rear cross-car stiffener subsystem is generally located at the underside of the rear compartment pan of a car body and connects the two rear longitudinal rails or rear rockers. The primary purpose of this subsystem is to maintain structural integrity as well as fuel system integrity in a rear angle impact or dynamic side impact collision. To evaluate the effect of this subsystem on lateral crashworthiness in a high speed angle impact, a finite element model consisting of the cross-car bar, a portion of rear compartment pan and both rear rails was developed and analyzed with the DYNA3D crashworthiness simulation software. Thus, the cross-car stiffener subsystem design including the welding pattern was finalized and the acceptable design was successfully implemented in the vehicle. Subsequently drop silo tests were carried out to further verify the design and to improve the manufacturing process.
Technical Paper

The Effect of Limiting Shoulder Belt Load with Air Bag Restraint

1995-02-01
950886
The dilemma of using a shoulder belt force limiter with a 3-point belt system is selecting a limit load that will balance the reduced risk of significant thoracic injury due to the shoulder belt loading of the chest against the increased risk of significant head injury due to the greater upper torso motion allowed by the shoulder belt load limiter. However, with the use of air bags, this dilemma is more manageable since it only occurs for non-deploy accidents where the risk of significant head injury is low even for the unbelted occupant. A study was done using a validated occupant dynamics model of the Hybrid III dummy to investigate the effects that a prescribed set of shoulder belt force limits had on head and thoracic responses for 48 and 56 km/h barrier simulations with driver air bag deployment and for threshold crash severity simulations with no air bag deployment.
Technical Paper

Anthropometry of Indy Car Drivers

1994-12-01
942547
This study assembled a database of anatomic dimensions of Indy Car drivers and developed procedures that can be used as models for future compilations of anatomic data from specialized populations. The database defines the body configuration for the Indy Car driver population and indicates that the current HYBRID III, midsize male crash dummy will provide a reasonable approximation of that population if used in investigations involving issues of crash protection. This study took advantage of a unique opportunity to assemble an anthropometric database from a specialized population which was compared to an existing database collected from a comparable sub-set of the United States population.
Technical Paper

Racing Car Restraint System Frontal Crash Performance Testing

1994-12-01
942482
This paper presents the results of a series of over 30 impact sled simulations of racing car frontal crashes conducted as part of the GM Motorsports Safety Technology Research Program. A Hyge™ impact sled fitted with a simulated racing car seat and restraint system was used to simulate realistic crash loading with a mid-size male Hybrid III dummy. The results of tests, in the form of measured loads, displacements, and accelerations, are presented and comparisons made with respect to the levels of these parameters seen in typical passenger car crash testing and to current injury threshold values.
X