Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Investigation of the Buoyancy Driven Flow in a Simplified Underhood-Part I, PIV and Temperature Measurements

2006-04-03
2006-01-1608
The results of thermal and flow studies for a ¼ scale model of an engine compartment are presented here. Using PIV and thermocouples, the mid-plane flow velocity and temperature of the buoyant underhood flow with engine block average surface temperature of 127°C and exhaust heaters (surface temperature ∼ 600°C) were measured. Thermocouples were also used to measure the steady-state temperature of the engine block surface and the enclosure outside and inside walls. The airflow in the engine compartment is steady, laminar and three dimensional as predicted by the Grashof and Reynolds numbers calculated for different simple geometries comprising the engine block and its exhausts. Three dominant vortices are found to exist at the top corners of the engine compartment. Thermal measurements on the engine block and enclosure surfaces support the temperature gradients expected given the specified geometry and boundary conditions.
Technical Paper

Investigation of the Buoyancy Driven Flow in a Simplified Underhood - Part II, Numerical Study

2006-04-03
2006-01-1607
This paper describes the numerical results for a simplified underhood buoyancy driven flow. The simplified underhood geometry consists of an enclosure, an engine block and two exhaust cylinders mounted along the sides of the engine block. The flow condition is set up in such a way that it mimics the buoyancy driven flow condition in the underhood environment when the vehicle is parked in a windbreak with the engine shut down. The experimental measurements for temperature and velocity of the same configuration were documented in the Part I of the same title. Present study focuses on the numerical issues of calculating temperature and flow field for the same flow configuration. The predicted temperature and velocity were compared with the available measured data. The mesh sizes, mesh type and the orders of spatial and temporal accuracy of the numerical setup are discussed.
X