Refine Your Search

Topic

Search Results

Journal Article

Vehicle Level Brake Drag Target Setting for EPA Fuel Economy Certification

2016-09-18
2016-01-1925
The strong focus on reducing brake drag, driven by a historic ramp-up in global fuel economy and carbon emissions standards, has led to renewed research on brake caliper drag behaviors and how to measure them. However, with the increased knowledge of the range of drag behaviors that a caliper can exhibit comes a particularly vexing problem - how should this complex range of behaviors be represented in the overall road load of the vehicle? What conditions are encountered during coastdown and fuel economy testing, and how should brake drag be measured and represented in these conditions? With the Environmental Protection Agency (amongst other regulating agencies around the world) conducting audit testing, and the requirement that published road load values be repeatable within a specified range during these audits, the importance of answering these questions accurately is elevated. This paper studies these questions, and even offers methodology for addressing them.
Technical Paper

Design and CFD Analysis of an NHRA Funny Car Body

2008-12-02
2008-01-3003
This paper describes the methodology used to design and perform a CFD analysis of a Chevrolet Impala SS Funny Car body. This body was designed for the purpose of making it available for teams to race it in the National Hot Rod Association (NHRA) drag racing series beginning with the 2007 race season. Several challenges were presented in this project: (1) This was the first time a General Motors drag racing body for use in professional classes (Funny Car or otherwise) was ever designed in CAD. (2) The body was originally designed as a 2007 Chevrolet Monte Carlo. After the tooling was completed, changes in Chevrolet’s product lineup required that the body be changed to a 2007 Impala SS. (3) Budget constraints precluded CFD analysis until after the bodies were already being manufactured. There were several teams that raced the new body during the 2007 race season. One of these teams won the Funny Car Driver’s Championship.
Technical Paper

Compatibility Study of Fluorinated Elastomers in Automatic Transmission Fluids

2008-06-23
2008-01-1619
A compatibility study was conducted on fluorinated elastomers (FKM and FEPM) in various Automatic Transmission Fluids (ATF). Representative compounds from various FKM families were tested by three major FKM raw material producers - DuPont Performance Elastomers (DPE), Dyneon and Solvay. All involved FKM compounds were tested in a newly released fluid (ATF-A) side-by-side with conventional transmission fluids, at 150°C for various time intervals per ASTM D471. In order to evaluate the fluid compatibility limits, some FKM's were tested as long as 3024 hrs, which is beyond the normal service life of seals. Tensile strength and elongation were monitored as a function of ATF exposure time. The traditional dipolymers and terpolymers showed poor resistance to the new fluid (ATF-A). Both types demonstrated significant decreases in strength and elongation after extended fluid exposure at 150°C.
Technical Paper

Plating on Plastics - Exterior Trim Part Properties

2008-04-14
2008-01-1460
Chrome plated automotive exterior parts continue to be popular. A good understanding of the properties of the unplated and plated parts is required to have the lowest cost successful design. In this work, traditional mechanical properties are compared between plated and unplated ABS and ABS+PC grades of plastic. Additional findings are shared for the thermal growth properties that are important to the designer who is trying to minimize gaps to adjacent components and for the engineer who wants the plated parts to resist cracking or peeling. Finally, some bend testing results are reviewed to understand better the susceptibility of the chrome plated plastics to crack when bent. In total, these results will help the exterior trim part designers optimize for cost, fit and finish.
Technical Paper

Improved Simulation of Local Necks in Quick Plastic Forming

2008-04-14
2008-01-1441
Two alternative finite element formulations are described which consider the influence of normal stress components on sheet deformations in Quick Plastic Forming [1]. The new formulations, single field bricks and multi-field shells, were implemented in the forming simulation program PAM-STAMP [2] using a non-linear viscoelastic constitutive relation [3,4]. Simulations of two industrial components indicate that both new elements simulate local necking more accurately than the standard shells which ignore normal stresses. The multi-field shells require slightly more calculation time than the standard shells and significantly less than equivalent brick models.
Technical Paper

Computational Aeroacoustics Investigation of Automobile Sunroof Buffeting

2007-05-15
2007-01-2403
A numerical investigation of automobile sunroof buffeting on a prototype sport utility vehicle (SUV) is presented, including experimental validation. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using the PowerFLOW code, a CFD/CAA software package from Exa Corporation based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution.
Technical Paper

CFD-based Robust Optimization of Front-end Cooling Airflow

2007-04-16
2007-01-0105
Development and integration of the cooling system for an automotive vehicle requires a balancing act between several performance and styling objectives. The cooling system needs to provide sufficient air for heat rejection with minimal impact on the aerodynamic drag, styling requirements and other criteria. An optimization of various design parameters is needed to develop a design to meet these objectives in a short amount of time. Increase in the accuracy of the numerical predictions and reduction in the turn-around time has made it possible for Computational Fluid Dynamics (CFD) to be used early in the design phase of the vehicle development. This study shows application of the CFD for robust design of the engine cooling system.
Technical Paper

Dynamic Moving Mesh CFD Study of Semi-truck Passing a Stationary Vehicle with Hood Open

2007-04-16
2007-01-0111
This paper examines the aerodynamic forces on the open hood of a stationary vehicle when another large vehicle, such as an 18-wheel semi-truck, passes by at high speed. The problem of semi-truck passing a parked car with hood open is solved as a transient two-vehicle aerodynamics problem with a Dynamic Moving Mesh (DMM) capability in commercial CFD software package FLUENT. To assess the computational feasibility, a simplified compact car / semi-truck geometry and CFD meshes are used in the first trial example. At 70 mph semi-truck speed, the CFD results indicate a peak aerodynamic force level of 20N to 30N on the hood of the car, and the direction of the net forces and moments on the hood change multiple times during the passing event.
Technical Paper

High Temperature Oxidation/Corrosion Performance of Various Materials for Exhaust System Applications

2006-04-03
2006-01-0605
Durability requirements for exhaust materials have resulted in the increased use of stainless steels throughout the exhaust system. The conversion of carbon steel exhaust flanges to stainless steel has occurred on many vehicles. Ferritic stainless steels are commonly used for exhaust flanges. Flange construction methods include stamped sheet steel, thick plate flanges and powder metal designs. Flange material selection criteria may include strength, oxidation resistance, weldability and cold temperature impact resistance. Flange geometry considerations include desired stiffness criteria, flange rotation, gasket/sealing technique and vehicle packaging. Both the material selection and flange geometry are considered in terms of meeting the desired durability and cost. The cyclic oxidation performance of the material is a key consideration when selecting flange materials.
Technical Paper

Fatigue Strength Effect of Thread Forming Process in Cast Aluminum

2006-04-03
2006-01-0780
Two thread forming processes, rolling and cutting, were studied for their effects on fatigue in cast aluminum 319-T7. Material was excised from cylinder blocks and tested in rotating-bending fatigue in the form of unnotched and notched specimens. The notched specimens were prepared by either rolling or cutting to replicate threads in production-intent parts. Cut threads exhibited conventional notch behavior for notch sensitive materials. In contrast, plastic deformation induced by rolling created residual compressive stresses in the notch root and significantly improved fatigue strength to the point that most of the rolled specimens broke outside the notch. Fractographic and metallographic investigation showed that cracks at the root of rolled notches were deflected upon initiation. This lengthened their incubation period, which effectively increased fatigue resistance.
Technical Paper

Wear Test Method for Developing Plastic Materials for Applications Wherein a Plastic Part is Rotating or Reciprocating Against a Metal Surface

2005-04-11
2005-01-0876
The wear test introduced in this paper can be used to determine and rank PV (pressure time velocity) capability of plastic materials for applications where a plastic part is rotating or reciprocating against a metal surface. It provides an accelerated test method to evaluate the wear performance of plastic materials. A single test can provide tribological information at multiple PV conditions. The tribological information obtained from this method includes coefficient of friction, PV (pressure times velocity) limits, and interface temperature profile. This test is currently used by General Motors Corporation to develop plastic materials for transmission thrust washer and dynamic seal applications. The test is running in two sequences (A & B), capable of a PV range from 50,000 psi-ft/min 500,000 psi-ft/min, under dry conditions. The PV steps in sequence A are combinations of high pressure and low velocity - for applications where high loads are expected, such as thrust washers.
Technical Paper

Further Assessment of Closed-Wall Wind Tunnel Blockage Using CFD

2005-04-11
2005-01-0868
The computational fluid dynamics (CFD) based wind tunnel blockage correction method proposed in [1] was extended in the present study to production vehicles with detailed underhood and underbody components, fascia and grills. Three different types of vehicles (sedan, SUV, and pickup truck) were considered in the study. While the previous CFD based wind tunnel blockage correction method was for vehicle aerodynamic drag, the blockage effect on vehicle cooling airflow is also included in the present study, and a CFD based blockage correction method for vehicle cooling airflow is proposed. Comparisons were made between the blockage effects for the production vehicles and the blockage effects for the generic vehicles.
Technical Paper

Simulation Based Development of Quick Plastic Forming

2005-04-11
2005-01-0088
A computer assisted development technique for Quick Plastic Forming parts [1] is described, based on the simulation program PAM-STAMP [2]. The technique allows thickness changes during forming to be accurately considered in the development process without physical trials. Process pressure cycles, which provide for maximal material formability, can be determined with a single simulation. The paper describes new program features, which reduce modeling effort and increase simulation accuracy. Various validation examples and industrial case studies are also presented, demonstrating current capabilities.
Technical Paper

CFD Simulations for Flow Over Pickup Trucks

2005-04-11
2005-01-0547
Computational fluid dynamics (CFD) was used to simulate the flow field over a pickup truck. The simulation was based on a steady state formulation and the focus of the simulation was to assess the capabilities of the currently used CFD tools for vehicle aerodynamic development for pickup trucks. Detailed comparisons were made between the CFD simulations and the existing experiments for a generic pickup truck. It was found that the flow structures obtained from the CFD calculations are very similar to the corresponding measured mean flows. Furthermore, the surface pressure distributions are captured reasonably well by the CFD analysis. Comparison for aerodynamic drags was carried out for both the generic pickup truck and a production pickup truck. Both the simulations and the measurements show the same trends for the drag as the vehicle geometry changes, This suggests that the steady state CFD simulation can be used to aid the aerodynamic development of pickup trucks.
Technical Paper

2006 Chevrolet Corvette C6 Z06 Aerodynamic Development

2005-04-11
2005-01-1943
This paper is intended to give a general overview of the key aerodynamic developments for the 2006 Chevrolet Corvette C6 Z06. Significant computational and wind tunnel time were used to develop the 2006 Z06 to provide it with improved high speed stability, increased cooling capability and equivalent drag compared to the 2004 Chevrolet Corvette C5 Z06.
Technical Paper

Experimental Investigation of the Flow Around a Generic SUV

2004-03-08
2004-01-0228
The results of an experimental investigation of the flow in the near wake of a generic Sport Utility Vehicle (SUV) model are presented. The main goals of the study are to gain a better understanding of the external aerodynamics of SUVs, and to obtain a comprehensive experimental database that can be used as a benchmark to validate math-based CFD simulations for external aerodynamics. Data obtained in this study include the instantaneous and mean pressures, as well as mean velocities and turbulent quantities at various locations in the near wake. Mean pressure coefficients on the base of the SUV model vary from −0.23 to −0.1. The spectrum of the pressure coefficient fluctuation at the base of the model has a weak peak at a Strouhal number of 0.07. PIV measurements show a complex three-dimensional recirculation region behind the model of length approximately 1.2 times the width of the model.
Technical Paper

Assessment of Closed-Wall Wind Tunnel Blockage using CFD

2004-03-08
2004-01-0672
Effects of the wind tunnel blockage in a closed-wall wind tunnel were investigated using computational fluid dynamics (CFD). Flow over three generic vehicle models representing a passenger sedan, a sports utility vehicle (SUV), and a pickup truck was solved. The models were placed in a baseline virtual wind tunnel as well as four additional virtual wind tunnels, each with different size cross-sections, providing different levels of wind tunnel blockage. For each vehicle model, the CFD analysis produced an aerodynamic drag coefficient for the vehicle at the blockage free condition as well as the blockage effect increment for the baseline wind tunnel. A CFD based blockage correction method is proposed. Comparisons of this method to some existing blockage correction methods for closed-wall wind tunnel are also presented.
Technical Paper

Free Expansion Bulge Testing of Tubes For Automotive Hydroform Applications

2004-03-08
2004-01-0832
Free expansion of straight tubes is the simplest test to evaluate tube properties for hydroforming applications and to provide basic understanding of the mechanics of tube hydroforming. A circular cylindrical tube is sealed at both ends and fluid, usually water, is pumped into the tube to increase its internal pressure to bulge and burst the tube. Previous numerical simulations of the free expansion tube test were limited to modeling the midsection of the tube under various assumptions of deformation path. The simulation results obtained deviated from the experimental results under all simulation conditions considered. A new model is developed in this paper in which the whole tube is simulated instead of considering only its mid-section. Judged by the pressure-expansion relations, the model accurately predicted free expansion hydroforming tests results.
Technical Paper

Modeling, Simulation, and Hardware-in-the-Loop Transmission Test System Software Development

2003-03-03
2003-01-0673
This paper describes the development of a generic test cell software designed to overcome many vehicle-component testing difficulties by introducing modern, real-time control and simulation capabilities directly to laboratory test environments. Successfully demonstrated in a transmission test cell system, this software eliminated the need for internal combustion engines (ICE) and test-track vehicles. It incorporated the control of an advanced AC induction motor that electrically simulated the ICE and a DC dynamometer that electrically replicated vehicle loads. Engine behaviors controlled by the software included not only the average crankshaft torque production but also engine inertia and firing pulses, particularly during shifts. Vehicle loads included rolling resistance, aerodynamic drag, grade, and more importantly, vehicle inertia corresponding to sport utility, light truck, or passenger cars.
Technical Paper

Automated Aerodynamic Design Optimization Process for Automotive Vehicle

2003-03-03
2003-01-0993
An automatic optimization process for the aerodynamic design of automotive vehicle shapes is presented. The Computational Fluid Dynamics (CFD) mesh generation and the analysis software packages are coupled for transfer of data and information between the two packages. This communication enables an automated process in which designs are created and analyzed for the aerodynamic drag. New designs are created by morphing the CFD model for the baseline design. The automated process is applied to perform a parametric study on a generic automobile sedan shape. The results show that the process can be used for aerodynamic optimization of any automotive vehicle shape. The turnaround for the automated process is at least an order of magnitude less than the conventional analysis process.
X