Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Journal Article

Vehicle Level Brake Drag Target Setting for EPA Fuel Economy Certification

2016-09-18
2016-01-1925
The strong focus on reducing brake drag, driven by a historic ramp-up in global fuel economy and carbon emissions standards, has led to renewed research on brake caliper drag behaviors and how to measure them. However, with the increased knowledge of the range of drag behaviors that a caliper can exhibit comes a particularly vexing problem - how should this complex range of behaviors be represented in the overall road load of the vehicle? What conditions are encountered during coastdown and fuel economy testing, and how should brake drag be measured and represented in these conditions? With the Environmental Protection Agency (amongst other regulating agencies around the world) conducting audit testing, and the requirement that published road load values be repeatable within a specified range during these audits, the importance of answering these questions accurately is elevated. This paper studies these questions, and even offers methodology for addressing them.
Technical Paper

Least-Enthalpy Based Control of Cabin Air Recirculation

2015-04-14
2015-01-0372
The vehicle air-conditioning system has significant impact on fuel economy and range of electric vehicles. Improving the fuel economy of vehicles therefore demand for energy efficient climate control systems. Also the emissions regulations motivate the reduced use of fuel for vehicle's cabin climate control. Solar heat gain of the passenger compartment by greenhouse effect is generally treated as the peak thermal load of the climate control system. Although the use of advanced glazing is considered first to reduce solar heat gain other means such as ventilation of parked car and recirculation of cabin air also have impetus for reducing the climate control loads.
Technical Paper

Thermal-Mechanical Durability of DOC and DPF After-treatment System for Light Heavy Pickup Truck Application

2009-11-02
2009-01-2707
The US Environmental Protection Agency (EPA)’s heavy duty diesel emission standard was tightened beginning from 2007 with the introduction of ultra-low-sulfur diesel fuel. Most heavy duty diesel applications were required to equip Particulate Matter (PM) after-treatment systems to meet the new tighter, emission standard. Systems utilizing Diesel Oxidation Catalyst (DOC) and Catalyzed-Diesel Particulate Filter (DPF) are a mainstream of modern diesel PM after-treatment systems. To ensure appropriate performance of the system, periodic cleaning of the PM trapped in DPF by its oxidation (a process called “regeneration”) is necessary. As a result, of this regeneration, DOC’s and DPF’s can be exposed to hundreds of thermal cycles during their lifetime. Therefore, to understand the thermo-mechanical performance of the DOC and DPF is an essential issue to evaluate the durability of the system.
Technical Paper

Opportunities and Challenges for Blended 2-Way SCR/DPF Aftertreatment Technologies

2009-04-20
2009-01-0274
Diesel engines offer better fuel economy compared to their gasoline counterpart, but simultaneous control of NOx and particulates is very challenging. The blended 2-way SCR/DPF is recently emerging as a compact and cost-effective technology to reduce NOx and particulates from diesel exhaust using a single aftertreatment device. By coating SCR catalysts on and inside the walls of the conventional wall-flow filter, the 2-way SCR/DPF eliminates the volume and mass of the conventional SCR device. Compared with the conventional diesel aftertreatment system with a SCR and a DPF, the 2-way SCR/DPF technology offers the potential of significant cost saving and packaging flexibility. In this study, an engine dynamometer test cell was set up to repeatedly load and regenerate the SCR/DPF devices to mimic catalyst aging experienced during periodic high-temperature soot regenerations in the real world.
Journal Article

Evaluation of Cu-Based SCR/DPF Technology for Diesel Exhaust Emission Control

2008-04-14
2008-01-0072
Recently, a new technology, termed 2-way SCR/DPF by the authors, has been developed by several catalyst suppliers for diesel exhaust emission control. Unlike a conventional emission control system consisting of an SCR catalyst followed by a catalyzed DPF, a wall-flow filter is coated with SCR catalysts for controlling both NOx and PM emissions in a single catalytic converter, thus reducing the overall system volume and cost. In this work, the potential and limitations of the Cu/Zeolite-based SCR/DPF technology for meeting future emission standards were evaluated on a pick-up truck equipped with a prototype light-duty diesel engine.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Technical Paper

A Flexible Engine Control Architecture for Model-based Software Development

2007-04-16
2007-01-1623
The fierce competition and shifting consumer demands require automotive companies to be more efficient in all aspects of vehicle development and specifically in the area of embedded engine control system development. In order to reduce development cost, shorten time-to-market, and meet more stringent emission regulations without sacrificing quality, the increasingly complex control algorithms must be transportable and reusable. Within an efficient development process it is necessary that the algorithms can be seamlessly moved throughout different development stages and that they can be easily reused for different applications. In this paper, we propose a flexible engine control architecture that greatly boosts development efficiency.
Technical Paper

Accuracy of Total Hydrocarbon Analyzer Measurements Measurements in the SULEV Region

2003-03-03
2003-01-0388
The super-ultra-low-emission-vehicle (SULEV) non-methane organic gas (NMOG) hydrocarbon exhaust standard as legislated by the state of California LEV II regulations is 10 milligrams per mile. This requires that the associative instrumentation must be capable of accurately and precisely determining total hydrocarbons (THC) concentrations on the order of 10 parts per billion-carbon (ppbC) for vehicle tests run under optimum conditions on a bag mini-diluter (BMD) test site. The flame ionization detector (FID) is the standard instrument used in the measurement of THC. Currently, there are many instrument manufacturers that produce these types of analyzers. This paper studies the limit of detection and accuracy capabilities of one of these instruments, the Beckman 400A FID. In addition, the paper shows evidence that supports that this “state of technology” as described by this instrument, is sufficient to meet the demands of the today's most stringent, vehicle emission standards.
Technical Paper

Experimental and Modeling Evaluations of a Vacuum-Insulated Catalytic Converter

1999-10-25
1999-01-3678
Vehicle evaluations and model calculations were conducted on a vacuum-insulated catalytic converter (VICC). This converter uses vacuum and a eutectic PCM (phase-change material) to prolong the temperature cool-down time and hence, may keep the converter above catalyst light-off between starts. Tailpipe emissions from a 1992 Tier 0 5.2L van were evaluated after 3hr, 12hr, and 24hr soak periods. After a 12hr soak the HC emissions were reduced by about 55% over the baseline HC emissions; after a 24hr soak the device did not exhibit any benefit in light-off compared to a conventional converter. Cool-down characteristics of this VICC indicated that the catalyst mid-bed temperature was about 180°C after 24hrs. Model calculations of the temperature warm-up were conducted on a VICC converter. Different warm-up profiles within the converter were predicted depending on the initial temperature of the device.
Technical Paper

Dual Catalytic Converters

1975-02-01
750176
The stringent 1978 emission standards of 0.41 gm/mi HC, 3.4 gm/mile CO, and 0.4 gm/mi NOx may require the use of a dual catalytic converter system (reducing and oxidizing catalyst). These emission requirements have been achieved at low mileage with such a system, but it is complex and has exhibited poor durability. This system also results in the loss of fuel economy at the 1978 emission levels.
X