Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Strain Rate Effect on Martensitic Transformation in a TRIP Steel Containing Carbide-Free Bainite

2019-04-02
2019-01-0521
Adiabatic heating during plastic straining can slow the diffusionless shear transformation of austenite to martensite in steels that exhibit transformation induced plasticity (TRIP). However, the extent to which the transformation is affected over a strain rate range of relevance to automotive stamping and vehicle impact events is unclear for most third-generation advanced high strength TRIP steels. In this study, an 1180MPa minimum tensile strength TRIP steel with carbide-free bainite is evaluated by measuring the variation of retained austenite volume fraction (RAVF) in fractured tensile specimens with position and strain. This requires a combination of servo-hydraulic load frame instrumented with high speed stereo digital image correlation for measurement of strains and ex-situ synchrotron x-ray diffraction for determination of RAVF in fractured tensile specimens.
Technical Paper

An Efficient Trivial Principal Component Regression (TPCR)

2019-04-02
2019-01-0515
Understanding a system behavior involves developing an accurate relationship between the explanatory (predictive) variables and the output response. When the observed data is ill-conditioned with potential collinear correlations among the measured variables, some of the statistical methods such as least squared method (LSM) fail to generate good predictive models. In those situations, other methods like Principal Component Regression (PCR) are generally applicable. Additionally, the PCR reduces the dimensionality of the system by making use of covariance relationship among the variables. In this paper, an improved regression method over PCR is proposed, which is based on the Trivial Principal Components (TPC). The TPC regression (TPCR) makes use of the covariance of the output response and predictive variables while extracting principal components. A new method of selecting potential principal components for variable reduction in TPCR is also proposed and validated.
Technical Paper

Combustion-Timing Control of Low-Temperature Gasoline Combustion (LTGC) Engines by Using Double Direct-Injections to Control Kinetic Rates

2019-04-02
2019-01-1156
Low-temperature gasoline combustion (LTGC) engines can provide high efficiencies and extremely low NOx and particulate emissions, but controlling the combustion timing remains a challenge. This paper explores the potential of Partial Fuel Stratification (PFS) to provide fast control of CA50 in an LTGC engine. Two different compression ratios are used (CR=16:1 and 14:1) that provide high efficiencies and are compatible with mixed-mode SI-LTGC engines. The fuel used is a research grade E10 gasoline (RON 92, MON 85) representative of a regular-grade market gasoline found in the United States. The fuel was supplied with a gasoline-type direct injector (GDI) mounted centrally in the cylinder. To create the PFS, the GDI injector was pulsed twice each engine cycle. First, an injection early in the intake stroke delivered the majority of the fuel (70 - 80%), establishing the minimum equivalence ratio in the charge.
Technical Paper

Virtual Traffic Simulator for Connected and Automated Vehicles

2019-04-02
2019-01-0676
Connected and automated vehicle (CAV) technologies promise a substantial decrease in traffic accidents and traffic jams, and bring new opportunities for improving vehicle’s fuel economy. However, testing autonomous vehicles in a real world traffic environment is costly, and covering all corner cases is nearly impossible. Furthermore, it is very challenging to create a controlled real traffic environment that vehicle tests can be conducted repeatedly and compared fairly. With the capability of allowing testing more scenarios than those that would be possible with real world testing, simulations are deemed safer, more efficient, and more cost-effective. In this work, a full-scale simulation platform was developed to simulate the infrastructure, traffic, vehicle, powertrain, and their interactions. It is used as an effective tool to facilitate control algorithm development for improving CAV’s fuel economy in real world driving scenarios.
Technical Paper

Limitations of Sector Mesh Geometry and Initial Conditions to Model Flow and Mixture Formation in Direct-Injection Diesel Engines

2019-04-02
2019-01-0204
Sector mesh modeling is the dominant computational approach for combustion system design optimization. The aim of this work is to quantify the errors descending from the sector mesh approach through three geometric modeling approaches to an optical diesel engine. A full engine geometry mesh is created, including valves and intake and exhaust ports and runners, and a full-cycle flow simulation is performed until fired TDC. Next, an axisymmetric sector cylinder mesh is initialized with homogeneous bulk in-cylinder initial conditions initialized from the full-cycle simulation. Finally, a 360-degree azimuthal mesh of the cylinder is initialized with flow and thermodynamics fields at IVC mapped from the full engine geometry using a conservative interpolation approach. A study of the in-cylinder flow features until TDC showed that the geometric features on the cylinder head (valve tilt and protrusion into the combustion chamber, valve recesses) have a large impact on flow complexity.
Technical Paper

Feasibility Study Using FE Model for Tire Load Estimation

2019-04-02
2019-01-0175
For virtual simulation of the vehicle attributes such as handling, durability, and ride, an accurate representation of pneumatic tire behavior is very crucial. With the advancement in autonomous vehicles as well as the development of Driver Assisted Systems (DAS), the need for an Intelligent Tire Model is even more on the increase. Integrating sensors into the inner liner of a tire has proved to be the most promising way in extracting the real-time tire patch-road interface data which serves as a crucial zone in developing control algorithms for an automobile. The model under development in Kettering University (KU-iTire), can predict the subsequent braking-traction requirement to avoid slip condition at the interface by implementing new algorithms to process the acceleration signals perceived from an accelerometer installed in the inner liner on the tire.
Technical Paper

A Mechanism-Based Thermomechanical Fatigue Life Assessment Method for High Temperature Engine Components with Gradient Effect Approximation

2019-04-02
2019-01-0536
High temperature components in internal combustion engines and exhaust systems must withstand severe mechanical and thermal cyclic loads throughout their lifetime. The combination of thermal transients and mechanical load cycling results in a complex evolution of damage, leading to thermomechanical fatigue (TMF) of the material. Analytical tools are increasingly employed by designers and engineers for component durability assessment well before any hardware testing. The DTMF model for TMF life prediction, which assumes that micro-crack growth is the dominant damage mechanism, is capable of providing reliable predictions for a wide range of high-temperature components and materials in internal combustion engines. Thus far, the DTMF model has employed a local approach where surface stresses, strains, and temperatures are used to compute damage for estimating the number of cycles for a small initial defect or micro-crack to reach a critical length.
Technical Paper

Determining the Greenhouse Gas Emissions Benefit of an Adaptive Cruise Control System Using Real-World Driving Data

2019-04-02
2019-01-0310
Adaptive cruise control is an advanced vehicle technology that is unique in its ability to govern vehicle behavior for extended periods of distance and time. As opposed to standard cruise control, adaptive cruise control can remain active through moderate to heavy traffic congestion, and can more effectively reduce greenhouse gas emissions. Its ability to reduce greenhouse gas emissions is derived primarily from two physical phenomena: platooning and controlled acceleration. Platooning refers to reductions in aerodynamic drag resulting from opportunistic following distances from the vehicle ahead, and controlled acceleration refers to the ability of adaptive cruise control to accelerate the vehicle in an energy efficient manner. This research calculates the measured greenhouse gas emissions benefit of adaptive cruise control on a fleet of 51 vehicles over 62 days and 199,300 miles.
Technical Paper

A System Safety Perspective into Chevy Bolt’s One Pedal Driving

2019-04-02
2019-01-0133
The Chevy Bolt’s One Pedal Driving feature is a new electrification propulsion enhancement that allows the driver to accelerate, decelerate and hold their vehicle stationary by just using the accelerator pedal. With this new feature, the driver is relieved of having to switch between pressing the accelerator pedal and brake pedal to slow, stop and hold the vehicle stationary. While this feature provides a convenience to the driver, it also presents a paradigm shift in driver engagement and control system responsibility for executing certain functions that the driver was traditionally responsible to perform. Various system safety techniques were involved in the development of such a feature both from a traditional functional safety perspective as well as a Safety of the Intended Functionality (SOTIF) perspective.
Technical Paper

Development of the TOP TIERTM Diesel Standard

2019-04-02
2019-01-0264
The TOP TIERTM Diesel fuel standard was first established in 2017 to promote better fuel quality in marketplace to address the needs of diesel engines. It provides an automotive recommended fuel specification to be used in tandem with regional diesel fuel specifications or regulations. This fuel standard was developed by TOP TIERTM Diesel Original Equipment Manufacturer (OEM) sponsors made up of representatives of diesel auto and engine manufacturers. This performance specification developed after two years of discussions with various stakeholders such as individual OEMs, members of Truck and Engine Manufacturers Association (EMA), fuel additive companies, as well as fuel producers and marketers. This paper reviews the major aspects of the development of the TOP TIERTM Diesel program including implementation and market adoption challenges.
Technical Paper

Development of a Low Loss Clutch for CVT Reverse Function

2019-04-02
2019-01-0774
Continuously variable transmissions (CVT) provide superior fuel economy by enabling internal combustion engines to operate at their “sweet spots”. However, there is still potential to improve CVT system’s mechanical efficiency, and further enhance vehicle-level fuel economy. In the past, extensive research work has focused on the core continuously variator unit (CVU) that includes pulleys and a belt or chain. Another thread of research has centered on optimization of CVT clamping force control to reduce hydraulic system loss. Nonetheless, to the best of our knowledge, very little research has looked into the planetary gear sets and clutches that enable the CVT system to switch between forward, neutral and reverse gears. The state-of-the-art reverse clutch usually consists of multiple friction and steel plates, and is normally open during all forward driving maneuvers. The relative speed between friction and steel plates is identical to turbine speed, which generate spin loss.
Technical Paper

Design and Implementation of a Distributed Thermal Control System for Power Electronics Components in Hybrid Vehicles

2019-04-02
2019-01-0501
Hybrid electric vehicles and battery electric vehicles (BEV) use power electronics (PE) devices to convert between high voltage DC power of the battery and other formats of power. These PE components requires operation within certain temperature range, otherwise, overheating causes component as well as vehicle performance degradation. Therefore, a thermal management system is required for PE components. This paper focuses on the design and development of such a PE components thermal control system. The proposed control system is a distributed thermal control system in which all the PE components are placed in series within one cooling loop. The advantage of the proposed control system is its reduced system complexity, energy efficiency and flexibility to add future PE components. In addition, electric control unit (ECU) are utilized so that complex control algorithms can be implemented.
Technical Paper

Constitutive Modeling and Thermomechanical Fatigue Life Predictions of A356-T6 Aluminum Cylinder Heads Considering Ageing Effects

2019-04-02
2019-01-0534
Cast aluminum alloys are frequently used as materials for cylinder head applications in internal combustion gasoline engines. These components must withstand severe cyclic mechanical and thermal loads throughout their lifetime. Reliable computational methods allow for accurate estimation of stresses, strains, and temperature fields and lead to more realistic Thermomechanical Fatigue (TMF) lifetime predictions. With accurate numerical methods, the components could be optimized via computer simulations and the number of required bench tests could be reduced significantly. These types of alloys are normally optimized for peak hardness from a quenched state that maximizes the strength of the material. However due to high temperature exposure, in service or under test conditions, the material would experience an over-ageing effect that leads to a significant reduction in the strength of the material.
Technical Paper

Tooling Effects on Edge Stretchability of AHSS in Mechanical Punching

2019-04-02
2019-01-1086
Edge stretchability reduction induced by mechanical trimming is a critical issue in advanced high strength steel applications. In this study, the tooling effects on the trimmed edge damage were evaluated by the specially designed in-plane hole expansion test with the consideration of three punch geometries (flat, conical, and rooftop), three cutting clearances (6%, 14%, and 20%) and two materials grades (DP980 and DP1180). Two distinct fracture initiation modes were identified with different testing configurations, and the occurrence of each fracture mode depends on the tooling configurations and materials grades. Digital Image Correlations (DIC) measurements indicate the materials are subject to different deformation modes and the various stress conditions, which result in different fracture initiation locations.
Technical Paper

Development of an Alternative Predictive Model for Gasoline Vehicle Particulate Matter and Particulate Number

2019-04-02
2019-01-1184
The Particulate Matter Index (PMI) is a helpful tool which provides an indication of a fuel’s sooting tendency. Currently, the index is being used by various laboratories and OEMs as a metric to understand the gasoline fuels impact on both sooting found on engine hardware and vehicle out emissions. This paper will explore a new method that could be used to give indication of the sooting tendency of the gasoline range fuels, called the Particulate Evaluation Index (PEI), and provide the detailed equation in its initial form. In addition, the PEI will be shown to have a good correlation agreement to PMI. The paper will then give a detailed explanation of the data used to develop it. Initial vehicle PM/PN data will also be presented that shows correlations of the indices to the vehicle response.
Technical Paper

A Closed Loop Method for Vehicle Instrument Cluster Test Automation

2019-04-02
2019-01-1250
Instrument Panel Cluster (IPC), is a key ECU in vehicles. As IPC is a visual product, testing the software features of IPC is highly manual effort. Software Testing constitutes for approx. 35% of the total Software Development Life Cycle (SDLC). High focus on quick to market, shorter SDLC coupled with manual validation environment poses a challenge of increasing testing efficiency and improving software quality. This challenge drove the need to investigate a solution to automate the testing process and cut down the huge manual effort that goes into validating an Instrument Panel Cluster (IPC) software. The proposed intrusive and non-intrusive approaches to automate the testing process of IPC software employs a Frame Grabbing technique for the former approach and a Camera based technique for the latter. Both the approaches are robust, reliable, and scalable and covers the major portion of Vehicle Instrument cluster test scenarios.
Technical Paper

Electrified Drive-Unit Parametric Mechanical-Loss Model Development and Calibration

2019-04-02
2019-01-1298
As the automotive industry vies to meet progressively more stringent global CO2 regulations in a cost-effective manner, electrified drive system cost and losses must be reduced. To this end, a parametric Drive Unit (DU) mechanical-loss model was developed to aid in the design and development of electrified propulsion systems, where the total propulsion system cost and DU losses can be directly linked (e.g., Hybrid Electric Vehicle (HEV) motor/inverter/engine content, or Battery Electric Vehicle (BEV) battery size). Many DUs for electrified propulsion systems are relatively “simple” drive systems, consisting of gears, bearings, shafts, lip seals, and an electric motor(s), but without clutches, high-pressure lube systems, or chains/belts as found in conventional automatic transmissions. The DU loss model described in this paper studies these simple DUs, with the mechanical losses dissected into 10 loss components.
Technical Paper

Efficiency Evaluation of Lower Viscosity ATF in a Planetary Automatic Transmission for Improved Fuel Economy

2019-04-02
2019-01-1296
With continued industry focus on reducing parasitic transmission and driveline losses, detailed studies are required to quantify potential enablers to improve vehicle fuel economy. Investigations were undertaken to understand the influence of lower viscosity Automatic Transmission Fluids (ATF) on transmission efficiency as compared with conventional fluids. The objectives of this study were to quantify the losses of lower viscosity ATF as compared with conventional ATF, and to understand the influence of ATF properties including viscosities, base oil types, and additive packages on fuel efficiency. The transmission efficiency investigations were conducted on a test bench following a vehicle-based break-in of the transmission using a prescribed drive cycle on a chassis dynamometer. At low temperature, the lower viscosity ATF showed a clear advantage over the conventional ATF in both spin loss and loaded efficiency evaluations.
Technical Paper

Analytical Evaluation of Engine and Vehicle Hardware Effects on Vehicle Response

2019-04-02
2019-01-1283
As the proliferation of downsized boosted engines continues, it becomes increasingly important to understand how engine and vehicle hardware impact vehicle transient response. Several different methodologies can be used to understand hardware impacts, such as vehicle testing, 0-D vehicle models, and constant engine speed load steps. The next evolution of predicting vehicle transient response is to transition to a system level vehicle analysis by coupling a detailed engine model, utilizing crank angle resolved calculations, with a simple vehicle model. This allows for the evaluation of engine and vehicle hardware effects on vehicle acceleration and the rate of change of vehicle acceleration, or jerk, and the tradeoffs that can be made between the hardware in early program development. By comparing this system level vehicle model to the different methodologies, it can be shown that a system level vehicle analysis allows for higher fidelity evaluations of vehicle transient response.
Technical Paper

Evaluation of V2V Reception Cadence- A New Metric for System Level Performance Analysis

2019-01-16
2019-01-0102
Vehicle to Everything (V2X) communication is a prominent solution for active safety collision avoidance and for providing autonomous vehicles Non-Line of Sight (NLOS) capabilities. For safety purposes, it is essential the V2X technology would support communication between all road users, e.g., Vehicles (V2V), pedestrians (V2P) and road infrastructure (V2I). Hence, the efficiency of a V2V communication solution should be evaluated through system level performance. In addition, the examined performance metrics need to reflect safety related properties. Metrics as Packet Reception Ratio (PRR) and transmission latencies, which are commonly used to assess V2X system’s functionality, aren’t enough since reception latencies are overlooked. The latter is crucial in ensuring messages would reach their destination on time to avoid hazardous incidents. The reception cadence may be much lower than this of the transmission due to various phenomenon (e.g. channel congestion).
X