Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Big Data and Telemetry Data Methodology for Usage Failure Mode Detection

2024-01-08
2023-36-0013
Using current technologies, a single “entry level” vehicle has millions of electrical signals sent through dozens of modules, sensors and actuators, and those signals can be sent over the air, creating a telemetry data that can be used for several ends. One electrical device is set up to have diagnosis, in order to make maintenance feasible and support repair, plus giving improvement directions for specialists on new developments and specifications, but in several cases the diagnosis can only determine the mechanism of failure, but not the event that triggered that failure. Current evaluation method involves teardown, testing and knowledge from the involved specialized team, but this implies in recovering of failed parts, which in larger automakers with thousands of dealers/repair shops, reduces the sample for analyses when there is a systemic issue with one component.
Technical Paper

Objective Vehicle Comfort Verification About Ride Smoothness Based on Psychophysics

2016-10-25
2016-36-0196
The purpose of the theme developed in this work is to increase the volume of information related to vehicle evaluation and how human perception can be translated into numbers, thus facilitating the process of definitions, refinement and analysis of its performance. Based on the discipline of psychophysics, where it is possible to study the relationship between stimulus and sensation and the use of post processing tool known as PSD (Power Spectral Density), post process the acceleration data of inputs perceived by the occupants of the vehicle, when driving in routes considered ergodic. By this, in a summarized way, get to human subjective perception of comfort. This material shows in a conceptual way a sequence of studies that were conducted to make it possible, to generate a performance classification of the subjective vehicle attribute of Smoothness, by processing values of acceleration measured the driver's seat.
Technical Paper

Passenger Vehicle Driver's Lower Limbs Ergonomics through the Development of Biomechanical Models

2015-09-22
2015-36-0205
Vehicle ergonomics, more specifically driver ergonomics, has been the subject of interest in the automotive industry as a way to provide customers vehicles that have more than modern project, efficiency and competitive price. The driver ergonomics is related to the way the driver interacts with the vehicle interior, particularly, with the seat, hand and foot controls, considering aspects such as ease of access, space, proper upper and lower limb motion and drivers comfort and fatigue. Regarding the lower limbs, the driver’s comfort can be evaluated in terms of joint moments and muscle forces, which are influenced by the hip, knee and ankle joint angles, which in turn depend on the distances between the seat and pedal. Variations in seat to pedal horizontal or vertical distances will result in different angular positions and, consequently, different joint moments and muscle forces, which are associated to greater or lower muscular activations and greater or lower driver’s fatigue.
Technical Paper

Study of Geometric Parameters for Validation and Reduction Effort in Steering System of a Vehicle FSAE

2015-09-22
2015-36-0147
This paper explores the method of modeling and validation the computational tools able to accurately replicate the dynamic behavior of a Formula SAE vehicle. Based on limitations in conducting physical tests, it is possible to mathematically predict the forces and momentum generated on the steering column of the vehicle, minimizing effort and improving driver comfort even before the component physically manufactured. The results in permanent state due technical instrumentations were used in the physical vehicles and compared with other proposals (skid Pad test). As the software simulating the same path, it was possible to adopt values of speed and wheel steering, allowing compare the dynamics of the vehicle, through the signals from other sensors installed in the data acquisition system, validating the behavior of the models presented in permanent state. Other aspects were studied to understand vehicle behavior concerning lateral stability and steering behavior.
Technical Paper

Influence of Understeer Gradient Variation during Cornering in the Vehicle Stability Perception

2014-09-30
2014-36-0209
Drive a vehicle through corners is a very complex activity, since it means change of movement states. Considering a typical corner, the driver starts in a transient state, changes to a steady state and again changes to transient. Those variations make the vehicle change its behavior due specific suspension and steering characteristics. The idea of this paper is show how only one of those characteristics, the understeer gradient, have influence in the stability perception of the driver. The focus is show how the understeer gradient variation can induce perception of low stability in vehicle when cornering no matter the vehicle still keeps its correct path. This variation means an understeer gradient “acceleration”, the metric human being can perceive, in other words the feeling of stability or its lack of.
Technical Paper

Front of Dash Pass-Through Design Optimization

2014-09-30
2014-36-0219
Product Design is a process of creating new product by an organization or business entity for its customer. Being part of a stage in a product life cycle, it is very important that the highest level of effort is being put in the stage. The Design for Six Sigma (DFSS) methodology consists of a collection of tools, needs-gathering, engineering, statistical methods, and best practices that find use in product development. DFSS has the objective of determining the needs of customers and the business, and driving those needs into the product solution so created. In this paper the DFSS methodology is employed to develop the optimal solution to enhance sound transmission loss in a vehicle front of dash pass-through. An integrated approach using acoustic holography and beamforming Noise Source Identification (NSI) techniques is presented as a manner to improve sound insulation during vehicle development.
Technical Paper

Automotive Skin Panels Quality Improvement by Means of Finite Element Method

2013-10-07
2013-36-0194
In the middle of the global competition, inside the automotive sector, the perceived quality of costumers, related to the beauty and harmony of the outer skin surfaces of motor vehicles, has become one of the main determinant factors in the purchase process decision. In general, the initial perceived quality of a car is determined by an appealing design of its body, the color and gloss of its paint, and also the manufacturing and assembly accuracy of the skin panels. The appealing design makes the skin panel even more complex and hard to produce with current metal forming technologies and the results are often small distortions on the outer surfaces about tens of microns and most of the times paint does not cover such imperfections. Despite the technological advances along the years, surface quality inspection was still being performed by manual and subjective evaluation by experts.
Technical Paper

Vehicle Restraint System Optimization for Frontal Impact

2013-10-07
2013-36-0473
The Brazilian Automotive regulations that are aimed towards the safety of drivers, passengers and pedestrians have gone through recent changes to prevent and/or minimize injury and trauma from different types of accidents. Until now, National Traffic Council (CONTRAN) Resolution n° 14/98 required vehicles to only have safety belts for an occupant restraint system, and frontal airbags were not required. Since the recent CONTRAN n° 311/09 Resolution requires mandatory frontal airbags, the occupant restraint system must be tuned due to the interaction with different components that may make up the system, like safety belts with pretensioners and seatbelt load limiting devices. The present study was developed to optimize the restraint system of a current vehicle in production, while focusing on minimizing the vehicle complexity. The optimization tool helped to develop a robust restraint system for the frontal passenger during a frontal impact [1].
Technical Paper

Springback: How to Improve its Early Prediction Instead of Late Stamping Dies Rework

2012-10-02
2012-36-0373
The globalization, rivalry and the technologies have changed the auto industry in a battlefield, where companies are fighting for quality, reliability, the reduction of development cycle and also cost. The manufacturing process of car body is the major responsible for time consumption, labor and investment. One of the bottleneck solutions is to use computational simulations during design phase in order to minimize the reworks. The car body is composed by several stamped parts, and its design requires a series of parallel activities, and one of the fundamental information is the accurate magnitude of spring back distortions, but due to the complexity of the phenomenon, the results are not so accurate as desired. The explored literatures are recommending numeric methods to simulate material's behavior and also the spring back phenomenon.
Technical Paper

Manual Steering Objective Reference Data Definition based on Subjective Evaluation Correlation

2011-10-04
2011-36-0031
Manual steering is largely employed on emergent markets and it demands high level performance to be competitive. To achieve customer satisfaction, it is important to understand physically and be able to quantify what is good performance regarding imperative steering aspects. Nevertheless, global projects and quality management require objective measurements and reference numbers. The strategy defining the measurements in order to compare among development steps and benchmark must be studied carefully. Objective measurements and subjective evaluation correlation is necessary to define the reference data. In this project, several cars were evaluated and measured performing standard maneuvers. The maneuvers were performed to obtain appropriated and enough information to understand the performance and to do the correlation. The subjective evaluation was normalized and; using objective data, parameters were calculated to represent properly and in a robust form the driver fills.
Technical Paper

The perceived impact of supply chain management on organizational effectiveness and quality

2010-10-06
2010-36-0173
Few products or services exist that do not require some supply chain management. The more suppliers that are involved the more complex the supply chain management becomes. Even if the entire supply chain from basic raw materials that come from the earth or out of the minds and actions of people, is not considered there is still a supply chain that must be attended and in today's global economy competition is growing every day, and automotive products (vehicles and components) are often developed in one country though it's made based on global architectures, used and applied in other markets, and to find success in this competitive reality, automakers and/or global business migrated from local suppliers to global sourcing and in today's world of global outsourcing, supply chain management plays an ever important, strategic and expanding role in delivering results once automakers are aiming to launch low cost vehicles and recognized as world best-in-class products.
Technical Paper

Computational method to assess the SUV drivers' dynamics due to rollover crashes

2010-10-06
2010-36-0223
Even though the rollover is not the most frequent type of accident, it is of the greatest significance with respect to injury and trauma caused to the vehicle occupants. The need to reduce death incidence and serious injuries has increased the importance of computational simulations and prototype testing. This study presents finite element model to simulate rollover events and to predict possible injuries caused in the head, neck, thorax and cervical spine. Numerical models of a sport utility vehicle (SUV) are simulated including anthropomorphic dummy to represent the driver. The injury risks and traumas are verified to the driver considering belted and unbelted dummies. The computational methodology developed proved to be efficient for the evaluation of the vehicle's roof structure in rollover events.
Technical Paper

Virtual Simulating of Residual Stresses in Aluminum Wheel Designs

2009-04-20
2009-01-0417
The current study shows interesting results obtained by a new virtual approaching for evaluating the final stresses presented in automotive components during its application in vehicle which suggests product engineers a new tool for measuring the residual stresses in casting. As part of this proposal, an automotive as-cast aluminum wheel belong to current production was evaluated in accordance with data acquired in its manufacturing process. At that step, it was taking into account the real information of casting process parameters and the metallurgic results obtained in laboratorial tests such as, metallographic, chemical and mechanical tests. FEA (Finite Element Analysis) on simulation of wheel loading stress was made regarding those preliminary data obtained in CRSFEA simulation (cast residual stress finite element analysis) as entered parameters.
Technical Paper

Reliability comparison between Latin America and African markets of a sub-compact platform

2008-10-07
2008-36-0010
Since the globalization, the automotive competition is growing every day, and automotive products (vehicles and components) are often developed in one country though it's made, used and applied in other markets. The operating conditions such as height, climate, topography, customer perception and other variables are often different from one market to another and could influence on the products reliability. If the market operating conditions are not considered in the vehicle development phase, the product may not fully perform its intended function over useful life period, and also may experience an excessive level of field complaints and/or failure modes specific to those markets and also damage the image of the brand.
Technical Paper

How to use Weibull as tool for a decision making on field issues

2008-10-07
2008-36-0192
Reliability, maintainability/serviceability and security are three qualities of product excellence desired by customers and users of products, however customer expectation for product reliability are continually increasing for almost all product and despite of most of the companies has worked on the philosophy of continuous improvement to meet or exceed the customer's expectations, its difficult to avoid failures or its difficult to ensure zero defect. Once it happens, it generate a customer complaint which is registered by companies. The way that companies used to register the complaints is through their warranty system and also a special database. Most of the companies maintain warranty databases for purposes of financial reporting and warranty expense forecasting. In some cases, there are attempts to extract engineering information from such databases. Another application is to use warranty data to detect potentially serious field reliability problems as early as possible.
Technical Paper

How to Achieve Faster, Cheaper and High Quality Parts by RTV Silicone Rubber Process

2005-11-22
2005-01-4095
In the automotive industries, time and parts production costs are fundamental, mainly in prototyping production. The RTV (Room Temperature Vulcanized) process is an important alternative production to flexible silicone molds when you need to inject polyurethane parts. The objective is time reduction in tooling production and parts. RTV requires notable initial investments in equipments. Many times, this cost does not fit in the automotive third part company's budget. This work shows how is possible to obtain parts by RTV process with excellent quality, without high investments in equipments and without quality loss in produced parts. Lead times and tooling and parts costs are analyzed. Due to equipments low costs, this alternative is accessible not only to automotive industries but also to small and medium suppliers.
Technical Paper

Strategies and Proposals to Minimize Squeaks and Rattles - Strong Customers Enthusiasm Improvement Program

2002-11-19
2002-01-3561
According to several customer perception survey, Squeak and Rattle (S&R) is among the top most annoying defects. Consequently, GMB engineering design, development and validation process must be continuously improved and consistently applied to all platforms to guarantee that all products are free from squeaks and rattles. This paper introduces those concepts and discusses some strategies to eliminate or minimize S&R. Concepts and tests results are commented. Finally, the challenge in detection and analysis of S&R is discussed. Objective and subjective evaluation methodologies are being developed and suppliers training and integration have been improved
X