Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Journal Article

Performance of Isolated UAV Rotors at Low Reynolds Number

2020-03-10
2020-01-0046
Vertical takeoff and landing vehicle platforms with many small rotors are gaining importance for small UAVs as well as distributed electric propulsion for larger vehicles. To predict vehicle performance, it must be possible to gauge interaction effects. These rotors operate in the less-known regime of low Reynolds number, with different blade geometry. As a first step, two identical commercial UAV rotors from a flight test program are studied in isolation, experimentally and computationally. Load measurements were performed in Georgia Tech’s 2.13 m × 2.74 m wind tunnel. Simulations were done using the RotCFD solver which uses a Navier-Stokes wake computation along with rotor-disc loads calculation using low-Reynolds number blade section data. It is found that in hover, small rotors available in the market vary noticeably in performance at low rotor speeds, the data converging at higher RPM and Reynolds number.
Technical Paper

The Flying Carpet: Aerodynamic High-Altitude Solar Reflector Design Study

2017-09-19
2017-01-2026
Our concept studies indicate that a set of reflectors floated in the upper atmosphere can efficiently reduce radiant forcing into the atmosphere. The cost of reducing the radiant forcing sufficiently to reverse the current rate of Global Warming, is well within reach of global financial resources. This paper summarizes the overall concept and focuses on one of the reflector concepts, the Flying Carpet. The basic element of this reflector array is a rigidized reflector sheet towed behind and above a solar-powered, distributed electric-propelled flying wing. The vehicle rises above 30,480 m (100,000 ft) in the daytime by solar power. At night, the very low wing loading of the sheets enables the system to stay well above the controlled airspace ceiling of 18,288 m (60,000 ft). The concept study results are summarized before going into technical issues in implementation. Flag instability is studied in initial wind tunnel experiments.
Technical Paper

Aerodynamic Loads on Arbitrary Configurations: Measurements, Computations and Geometric Modeling

2017-09-19
2017-01-2162
This paper brings together three special aspects of bluff-body aeromechanics. Experiments using our Continuous Rotation method have developed a knowledge base on the 6-degree-of-freedom aerodynamic loads on over 50 different configurations including parametric variations of canonical shapes, and several practical shapes of interest. Models are mounted on a rod attached to a stepper motor placed on a 6-DOF load cell in a low speed wind tunnel. The aerodynamic loads are ensemble-averaged as phase-resolved azimuthal variations. The load component variations are obtained as discrete Fourier series for each load component versus azimuth about each of 3 primary axes. This capability has enabled aeromechanical simulation of the dynamics of roadable vehicles slung below rotorcraft. In this paper, we explore the genesis of the loads on a CONEX model, as well as models of a short and long container, using the “ROTCFD” family of unstructured Navier-Stokes solvers.
Technical Paper

A Cycloidal Rotor and Airship System for On-Demand Hypercommuting

2016-09-20
2016-01-2026
An architecture is proposed for on-demand rapid commuting across congested-traffic areas. A lighter-than-air (LTA) vehicle provides the efficient loitering and part of the lift, while a set of cycloidal rotors provides the lift for payload as well as propulsion. This combination offers low noise and low downwash. A standardized automobile carriage is slung below the LTA, permitting driveway to driveway boarding and off-loading for a luxury automobile. The concept exploration is described, converging to the above system. The 6-DOF aerodynamic load map of the carriage is acquired using the Continuous-Rotation method in a wind tunnel. An initial design with rear ramp access is modified to have ramps at both ends. The initial design shows a divergence sped in access of 100 mph. An effort to improve the ride quality using yaw stabilizers, failed as the dynamic behavior becomes unstable. The requirements for control surfaces and instrumentation are discussed.
Technical Paper

Pressure Field Evolution on Rotor Blades at High Advance Ratio

2016-09-20
2016-01-2010
The design of advanced rotorcraft requires knowledge of the flowfield and loads on the rotor blade at extreme advance ratios (ratios of the forward flight speed to rotor tip speed). In this domain, strong vortices form below the rotor, and their evolution has a sharp influence on the aero-dynamics loads experienced by the rotor, particularly the loads experienced at pitch links. To understand the load distribution, the surface pressure distribution must be captured. This has posed a severe problem in wind tunnel experiments. In our experiments, a 2-bladed teetering rotor with collective and cyclic pitch controls is used in a low speed subsonic wind tunnel in reverse flow. Stereoscopic particle image velocimetry is used to measure the three component spatial velocity field. Measurement accuracy is now adequate for velocity data, and can be converted to pressure both at and away from the blade surface.
Technical Paper

Coaxial Rotor Flow Phenomena in Forward Flight

2016-09-20
2016-01-2009
Coaxial rotors are finding use in advanced rotorcraft concepts. Combined with lift offset rotor technology, they offer a solution to the problems of dynamic stall and reverse flow that often limit single rotor forward flight speeds. In addition, coaxial rotorcraft systems do not need a tail rotor, a major boon during operation in confined areas. However, the operation of two counter-rotating rotors in close proximity generates many possible aerodynamic interactions between rotor blades, blades and vortices, and between vortices. With two rotors, the parameter design space is very large, and requires efficient computations as well as basic experiments to explore aerodynamics of a coaxial rotor and the effects on performance, loads, and acoustics.
Technical Paper

Yaw Effects on the Narrowband Spectra Above a Delta Wing in Turbulent Flow

2016-09-20
2016-01-2056
Combat aircraft maneuvering at high angles of attack or in landing approach are likely to encounter conditions where the flow over the swept wings is yawed. This paper examines the effect of yaw on the spectra of turbulence above and aft of the wing, in the region where fins and control surfaces are located. Prior work has shown the occurrence of narrowband velocity fluctuations in this region for most combat aircraft models, including those with twin fins. Fin vibration and damage has been traced to excitation by such narrowband fluctuations. The narrowband fluctuations themselves have been traced to the wing surface. The issue in this paper is the effect of yaw on these fluctuations, as well as on the aerodynamic loads on a wing, without including the perturbations due to the airframe.
Technical Paper

Aerodynamic Load Maps of Vehicle Shapes at Arbitrary Attitude

2015-09-15
2015-01-2574
The interest in flying cars comes with the question of characterizing aerodynamic loads on shapes that go beyond traditional aircraft shapes. When carried as slung loads under aircraft, vehicles can encounter severe aerodynamic loads, which may also cause them to go into divergent oscillations that can threaten the vehicle and aircraft. Slung loads can encounter the wind at arbitrary attitudes. Flight test certification for every vehicle-aircraft combination is prohibitive. Characterizing the aerodynamic loads with sufficient resolution for use in dynamic simulation, has in the past been extremely arduous. Sharp changes that drive instabilities arise over small ranges of yaw and pitch. With the Continuous Rotation technique developed by our group, aerodynamic load characterization is viable and efficient. With two well-chosen attitude sweeps and appropriate transformations, the entire 6-DOF load map can be obtained, for several rates.
Technical Paper

Narrow-Band Excitation of Vortex Flows

2015-09-15
2015-01-2572
At high angles of attack, the flow over a swept wing generates counter-rotating vortical features. These features can amplify into a nearly sinusoidal fluctuation of velocity components. The result is excitation of twin-fin buffeting, driven at clearly predictable frequencies, or at nearby lock-in frequencies of the fin structure. This is distinct from the traditional model of fin buffeting as a structural resonant response to broadband, large-amplitude excitation from vortex core bursting. Hot-film anemometry was conducted ahead of the vertical fins of a 1:48 scale model of the F-35B aircraft, in the angle of attack range between 18 and 30 degrees. Auto spectral density functions from these data showed a sharp spectral peak in the flow ahead of the fins for angles of attack between 20 and 28 degrees. Small fences placed on the top surface of the wing eliminated the spectral peak, leaving only a broadband turbulent spectrum.
Technical Paper

Towards Electric Aircraft: Progress under the NASA URETI for Aeropropulsion and Power Technology

2006-11-07
2006-01-3097
The environmental impact of aircraft, specifically in the areas of noise and NOx emissions, has been a growing community concern. Coupled with the increasing cost and diminishing supply of traditional fossil fuels, these concerns have fueled substantial interest in the research and development of alternative power sources for aircraft. In 2003, NASA and the Department of Defense awarded a five year research cooperative agreement to a team of researchers from three different universities to address the design and analysis of revolutionary aeropropulsion technologies.
Technical Paper

Energy Consumption Test Methods and Results for Servo-Pump Continuously Variable Transmission Control System

2005-10-24
2005-01-3782
Test methods and data acquisition system specifications are described for measurements of the energy consumption of the control system of a servo-pump continuously variable transmission (CVT). Dynamic measurements of the power consumption of the servo-pump CVT control system show that the control system draws approximately 18.9 W-hrs of electrical energy over the HWFET cycle and 13.6 W-hrs over the 505 cycle. Sample results are presented of the dynamic power consumption of the servo-pump system under drive cycle conditions. Steady state measurements of the control power draw of the servo-pump CVT show a peak power consumption of 271 W, including lubrication power. The drive-cycle averaged and steady state energy consumption of the servo-pump CVT are compared to conventional CVT pump technologies.
Technical Paper

Analysis of Aerobatic Flight Safety Using Autonomous Modeling and Simulation

2000-04-11
2000-01-2100
An affordable technique is proposed for fast quantitative analysis of aerobatics and other complex flight domains of highly maneuverable aircraft. A generalized autonomous situational model of the “pilot (automaton) – vehicle – operational environment” system is employed as a “virtual test article”. Using this technique, a systematic knowledge of the system behavior in aerobatic flight can be generated on a computer, much faster than real time. This information can be analyzed via a set of knowledge mapping formats using a 3-D graphics visualization tool. Piloting and programming skills are not required in this process. Possible applications include: aircraft design and education, applied aerodynamics, flight control systems design, planning and rehearsal of flight test and display programs, investigation of aerobatics-related flight accidents and incidents, physics-based pilot training, research into new maneuvers, autonomous flight, and onboard AI.
Technical Paper

Nonlinear Adaptive Control of Tiltrotor Aircraft Using Neural Networks

1997-10-13
975613
Neural network augmented model inversion control is used to provide a civilian tilt-rotor aircraft with consistent response characteristics throughout its operating envelope, including conversion flight. The implemented response types are Attitude Command Attitude Hold in the longitudinal channel, and Rate Command Attitude Hold about the roll and yaw axes. This article describes the augmentation in the roll channel and the augmentation for the yaw motion including Heading Hold at low airspeeds and automatic Turn Coordination at cruise flight. Conventional methods require extensive gain scheduling with tilt-rotor nacelle angle and airspeed. A control architecture is developed that can alleviate this requirement and thus has the potential to reduce development time. It also facilitates the implementation of desired handling qualities, and permits compensation for partial failures.
Technical Paper

Aircraft Control Using Stagnation Point Displacement

1997-10-01
975590
A Stagnation Point Actuator is used to control the lateral dynamics of vortices generated over a sharp-pointed forebody, at high angles of attack, and the resulting rolling moment is studied. Effective roll control is demonstrated, including the ability to suppress the wing rock phenomenon. Piecewise-linear transfer functions are developed from experimental data for the changes in roll moment and pressure difference with actuator frequency content. These transfer functions are reduced to compact form in the frequency domain, and then to a time-domain model using 2 gains and 2 time scales. The roll response is classified according to angle of attack range. Some long time scales are observed in the surface pressure, velocity field and rolling moment, making the response relatively insensitive to speed. Thus over substantial speed ranges, linear transfer functions are shown to effectively describe the roll response to motion of the Stagnation Point Actuator.
Technical Paper

Expanding the Role of the Wind-Driven Manipulator

1997-10-01
975589
The wind-driven dynamic manipulator is a device which uses the wind tunnel freestream energy to drive multi-axis maneuvers of test models. This paper summarizes work performed using the device in several applications and discusses current work on characterizing the aerodynamics of an X-38 vehicle model in pitch-yaw maneuvers. Previous applications in flow visualization, adaptive control and linear-domain parameter identification are now extended to multi-axis inverse force and moment measurement over large ranges of attitude. A pitch-yaw-roll version is operated with active roll to measure forces and moments during maneuvers. A 3-D look-up table generated from direct force calibration allows operation of the manipulator through nonlinear regimes where control wing stall and boom wake-wing interactions are allowed to occur. Hybrid designs combining conventional and wind-driven degrees of freedom are discussed.
X