Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Modeling of a Methanol Fueled Direct-Injection Spark-Ignition Engine with Reformed-Exhaust Gas Recirculation

2021-04-06
2021-01-0445
Methanol is a promising fuel for future spark-ignition engines. Its properties enable increased engine efficiency. Moreover, the ease with which methanol can be reformed, using waste exhaust heat, potentially offers a pathway to even higher efficiencies. The primary objective of this study was to build and validate a model for a methanol fueled direct-injection spark-ignition engine with on-board fuel reforming for future investigation and optimization. The second objective was to understand the combustion characteristics, energy losses and engine efficiency. The base engine model was developed and calibrated before adding a reformed-exhaust gas recirculation system (R-EGR). A newly developed laminar burning velocity correlation with universal dilution term was implemented into the model to predict the laminar burning velocity with the presence of hydrogen in the reforming products.
Technical Paper

Combustion Characterization of Methanol in a Lean Burn Direct Injection Spark Ignition (DISI) Engine

2019-04-02
2019-01-0566
Lean operation is a promising approach to increase the engine efficiency. One of the main challenges for lean-burn technology is the combustion instability. Using a high laminar burning velocity fuel such as methanol might solve that problem. The potential of lean-burn limit extension with methanol was investigated through a comparison with conventional gasoline. In this work, a direct injection turbocharged SI engine was operated at wide open throttle (WOT), with the load controlled by a lean-burn strategy. The amount of fuel was decreased (or lambda increased) until the combustion became unstable. For methanol, the lambda limit was about 1.5, higher than the lambda limit for gasoline which was only about 1.2. The brake thermal efficiency for methanol increased as lambda increased and reached its peak at ~41% in a lambda range of 1.2-1.4. Then, the efficiency decreased as lambda increased.
Technical Paper

Experimental Investigation of a DISI Production Engine Fuelled with Methanol, Ethanol, Butanol and ISO-Stoichiometric Alcohol Blends

2015-04-14
2015-01-0768
Stricter CO2 and emissions regulations are pushing spark ignition engines more and more towards downsizing, enabled through direct injection and turbocharging. The advantages which come with direct injection, such as increased charge density and an elevated knock resistance, are even more pronounced when using low carbon number alcohols instead of gasoline. This is mainly due to the higher heat of vaporization and the lower air-to-fuel ratio of light alcohols such as methanol, ethanol and butanol. These alcohols are also attractive alternatives to gasoline because they can be produced from renewable resources. Because they are liquid, they can be easily stored in a vehicle. In this respect, the performance and engine-out emissions (NOx, CO, HC and PM) of methanol, ethanol and butanol were examined on a 4 cylinder 2.4 DI production engine and are compared with those on neat gasoline.
Technical Paper

Development and Validation of a Knock Prediction Model for Methanol-Fuelled SI Engines

2013-04-08
2013-01-1312
Knock is one of the main factors limiting the efficiency of spark-ignition engines. The introduction of alternative fuels with elevated knock resistance could help to mitigate knock concerns. Alcohols are prime candidate fuels and a model that can accurately predict their autoignition behavior under varying engine operating conditions would be of great value to engine designers. The current work aims to develop such a model for neat methanol. First, an autoignition delay time correlation is developed based on chemical kinetics calculations. Subsequently, this correlation is used in a knock integral model that is implemented in a two-zone engine code. The predictive performance of the resulting model is validated through comparison against experimental measurements on a CFR engine for a range of compression ratios, loads, ignition timings and equivalence ratios.
Technical Paper

Performance and Emissions of a SI Engine using Methanol-Water Blends

2013-04-08
2013-01-1319
Using liquid alcohols, such as methanol and ethanol, in spark-ignition engines is a promising approach to decarbonize transport and secure domestic energy supply. Methanol and ethanol are compatible with the existing fuelling and distribution infrastructure and are easily stored in a vehicle. They can be used in internal combustion engines with only minor adjustments and have the potential to increase the efficiency and decrease noxious emissions compared to gasoline engines. In addition, methanol can be synthesized from a wide variety of sources, including renewably produced hydrogen in combination with atmospheric CO₂. Presently, during the production of ethanol or methanol a dehydration step is always applied. This step accounts for a significant part of the entire production process' energy consumption and thus, from an economical point of view, methanol and ethanol could become more interesting alternative fuels if the costs related with dehydration could be reduced.
Technical Paper

Drive Cycle Analysis of Load Control Strategies for Methanol Fuelled ICE Vehicle

2012-09-10
2012-01-1606
The use of methanol as spark-ignition engine fuel can help to increase energy security and offers the prospect of carbon neutral transport. Methanol's properties enable considerable improvements in engine performance, efficiency and CO2 emissions compared to gasoline operation. SAE paper 2012-01-1283 showed that both flex-fuel and dedicated methanol engines can benefit from an operating strategy employing exhaust gas recirculation (EGR) to control the load while leaving the throttle wide open (WOT). Compared to throttled stoichiometric operation, this reduces pumping work, cooling losses, dissociation and engine-out NOx. The current paper presents follow-up work to determine to what extent these advantages still stand over an entire drive cycle. The average vehicle efficiency, overall CO2 and NOx emissions from a flexible fuel vehicle completing a drive cycle on gasoline and methanol were evaluated.
Journal Article

Applying Design of Experiments to Determine the Effect of Gas Properties on In-Cylinder Heat Flux in a Motored SI Engine

2012-04-16
2012-01-1209
Models for the convective heat transfer from the combustion gases to the walls inside a spark ignition engine are an important keystone in the simulation tools which are being developed to aid engine optimization. The existing models have, however, been cited to be inaccurate for hydrogen, one of the alternative fuels currently investigated. One possible explanation for this inaccuracy is that the models do not adequately capture the effect of the gas properties. These have never been varied in a wide range because air and ‘classical’ fossil fuels have similar values, but they are significantly different in the case of hydrogen. As a first step towards a fuel independent heat transfer model, we have investigated the effect of the gas properties on the heat flux in a spark ignition engine.
Technical Paper

Experimental Evaluation of Lean-burn and EGR as Load Control Strategies for Methanol Engines

2012-04-16
2012-01-1283
The use of light alcohols as SI engine fuels can help to increase energy security and offer the prospect of carbon neutral transport. These fuels enable improvements in engine performance and efficiency as several investigations have demonstrated. Further improvements in efficiency can be expected when switching from throttled stoichiometric operation to strategies using mixture richness or exhaust gas recirculation (EGR) to control load while maintaining wide open throttle (WOT). In this work the viability of throttleless load control using EGR (WOT EGR) or mixture richness (WOT lean burn) as operating strategies for methanol engines was experimentally verified. Experiments performed on a single-cylinder engine confirmed that the EGR dilution and lean burn limit of methanol are significantly higher than for gasoline. On methanol, both alternative load control strategies enable relative indicated efficiency improvements of about 5% compared to throttled stoichiometric operation.
X