Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Sensory Prognostics and Management System (SPMS)

2012-10-22
2012-01-2095
The Sensory Prognostics and Management Systems (SPMS) program sponsored by the Federal Aviation Administration and Boeing developed and evaluated designs to integrate advanced diagnostic and prognostic (i.e., Integrated Vehicle Health Management (IVHM) or Health Management (HM)) capabilities onto commercial airplanes. The objective of the program was to propose an advanced HM system appropriate for legacy and new aircraft and examine the technical requirements and their ramifications on the current infrastructure and regulatory guidance. The program approach was to determine the attractive and feasible HM applications, the technologies that are required to cost effectively implement these applications, the technical and certification challenges, and the system level and business consequences of such a system.
Technical Paper

Development Status of the Carbon Dioxide and Moisture Removal Amine Swing-Bed System (CAMRAS)

2009-07-12
2009-01-2441
Under a cooperative agreement with NASA, Hamilton Sundstrand has successfully designed, fabricated, tested and delivered three, state-of-the-art, solid amine prototype systems capable of continuous CO2 and humidity removal from a closed, habitable atmosphere. Two prototype systems (CAMRAS #1 and #2) incorporated a linear spool valve design for process flow control through the sorbent beds, with the third system (CAMRAS #3) employing a rotary valve assembly that improves system fluid interfaces and regeneration capabilities. The operational performance of CAMRAS #1 and #2 has been validated in a relevant environment, through both simulated human metabolic loads in a closed chamber and through human subject testing in a closed environment.
Technical Paper

Continued Research in EVA, Navigation, Networking and Communication Systems

2008-06-29
2008-01-2029
This paper summarizes the results of our continued testing of a radio based, non-Global Positioning System (GPS) navigation and communications system. The system has been integrated with two mobile computers, a robot and four work stations. It demonstrated crewmember interfaces for acquiring, storing and transmitting data from a space suit life support system simulation, test subject Electrocardiogram (ECG) and other biomedical data. This is an extension of the functions which were tested last year during the NASA Desert Research and Technology Studies (RATS) 2006 activities at both Johnson Space Center in Houston Texas and at Meteor Crater near Flagstaff Arizona. We added considerable complexity to the tests. The tests were conducted on an accurate series of geo-referenced paths at the El Toro Marine Air Station, a closed air field.
Technical Paper

Development Status of the Carbon Dioxide and Moisture Removal Amine Swing-bed (CAMRAS)

2007-07-09
2007-01-3157
Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations led by Hamilton Sundstrand is developing an amine based humidity and carbon dioxide (CO2) removal process and prototype equipment for Vision for Space Exploration (VSE) applications. This system employs thermally linked amine sorbent beds operating as a pressure swing adsorption system, using the vacuum of space for regeneration. The prototype hardware was designed based on a two fault tolerant requirement, resulting in a single system that could handle the metabolic water and carbon dioxide load for a crew size of six. Two, full scale prototype hardware sets, consisting of a linear spool valve, actuator and amine sorbent canister, have been manufactured, tested, and subsequently delivered to NASA JSC. This paper presents the design configuration and the pre-delivery performance test results for the CAMRAS hardware.
Technical Paper

Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2007-07-09
2007-01-3156
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels.
Technical Paper

Development Status of an EVA-sized Cycling Amine Bed System for Spacesuit Carbon Dioxide and Humidity Removal

2007-07-09
2007-01-3272
Under a NASA sponsored technology development activity, Hamilton Sundstrand has designed, fabricated, tested and delivered a prototype solid amine-based carbon dioxide (CO2) and water (H2O) vapor removal system sized for Extravehicular Activity (EVA) operation. The prototype system employs two alternating and thermally-linked solid amine sorbent beds to continuously remove CO2 and H2O vapor from a closed environment. While one sorbent bed is exposed to the vent loop to remove CO2 and water vapor, the other bed is exposed to a regeneration circuit, defined as either vacuum or an inert sweep gas stream. A linear spool valve, coupled directly to the amine canister assembly, is utilized to simultaneously divert the vent loop flow and regeneration circuit flow between the two sorbent beds.
Technical Paper

Prototype Cryogenic Oxygen Storage and Delivery Subsystem for Advanced Spacesuits

2007-07-09
2007-01-3276
Future spacesuit systems for the exploration of Mars will need to be much lighter than current designs, while at the same time reducing the consumption of water for crew cooling. One of the technology paths NASA has identified to achieve these objectives is the replacement of current high pressure oxygen storage technology in extravehicular activity (EVA) systems with cryogenic technology that can simultaneously reduce the mass of tankage required for oxygen storage and enable the use of the stored oxygen as a means of cooling the EVA astronaut. During the past year NASA has funded production of a prototype system demonstrating this capability in a design that will allow the cryogenic oxygen to be used in any attitude and gravity environment. This paper describes the design and manufacture of the prototype system. The potential significance and application of the system is also discussed.
Technical Paper

Development Status of Amine-based, Combined Humidity, CO2 and Trace Contaminant Control System for CEV

2006-07-17
2006-01-2192
Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations lead by Hamilton Sundstrand is developing an amine-based humidity and CO2 removal process and prototype equipment for Vision for Space Exploration (VSE) applications. Originally this project sought to research enhanced amine formulations and incorporate a trace contaminant control capability into the sorbent. In October 2005, NASA re-directed the project team to accelerate the delivery of hardware by approximately one year and emphasize deployment on board the Crew Exploration Vehicle (CEV) as the near-term developmental goal. Preliminary performance requirements were defined based on nominal and off-nominal conditions and the design effort was initiated using the baseline amine sorbent, SA9T.
X