Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Testing and Development of New Catalysts for Vapor Phase Ammonia Oxidation

Catalytic oxidation is an effective means of controlling the build up of ammonia and other trace gas contaminants within closed spaces. However, it sometimes leads to the formation of noxious gases that need to be removed in post-treatment systems. In addition, ammonia removal is an issue when regeneration of water from wastewater is considered since ammonia is a byproduct of urea decomposition. For example, the VPCAR (Vapor Phase Catalytic Ammonia Reduction) advanced water processor system includes an oxidation reactor for the destruction of ammonia and of other volatile organics that are not separated out in the evaporator due to their volatility. The oxidation of ammonia may produce nitrogen, nitrogen oxides (NO and NO2), nitrous oxide (N2O) and water vapor. The Spacecraft Maximum Allowable Concentration (SMAC) for NO and NO2 are respectively 4.5 and 0.5 ppm whereas the Threshold Limit Value (TLV) for N2O is 25 ppm.
Technical Paper

An Improved Pyrolyzer for Solid Waste Resource Recovery in Space

Pyrolysis processing is one of several options for solid waste resource recovery in space. It has the advantage of being relatively simple and adaptable to a wide variety of feedstocks and it can produce several usable products from typical waste streams. The overall objective of this study was to produce a prototype mixed solid waste pyrolyzer for spacecraft applications. A two-stage reactor system was developed which can process a maximum of about 0.5 kg of waste per cycle. The reactor includes a pyrolysis chamber where the waste is heated to temperatures above 600 °C for primary pyrolysis. The volatile products (liquids, gases) are transported by a N2 purge gas to a second chamber which contains a catalyst bed for cracking the tars at temperatures of about 1000-1100 °C. The tars are cracked into carbon and additional gases. Most of the deposited carbon is subsequently gasified by oxygenated volatiles (CO2, H2O) from the first stage.
Technical Paper

Catalyst Development for the Space Station Water Processor Assembly

Hamilton Sundstrand Space Systems International (HSSSI) is currently under contract with NASA MSFC to design, fabricate and deliver the Water Processor Assembly (WPA) for the International Space Station (ISS). As part of this effort HSSSI has developed an oxidation catalyst for the catalytic reactor assembly in the WPA. This paper discusses full-scale development reactor testing and the status of the life testing of the oxidation catalyst used in the reactor.