Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

International Space Station Waste Collector Subsystem Risk Mitigation Experiment Design Improvements

2002-07-15
2002-01-2304
The International Space Station Waste Collector Subsystem Risk Mitigation Experiment (ISS WCS RME) was flown as the primary (Shuttle) WCS on Space Shuttle flight STS-104 (ISS-7A) in July 2001, to validate new design enhancements. In general, the WCS is utilized for collecting, storing, and compacting fecal & associated personal hygiene waste, in a zero gravity environment. In addition, the WCS collects and transfers urine to the Shuttle waste storage tank. All functions are executed while controlling odors and providing crew comfort. The ISS WCS previously flew on three Shuttle flights as the Extended Duration Orbiter (EDO) WCS, as it was originally designed to support extended duration Space Shuttle flights up to 30 days in length. Soon after its third flight, the Space Shuttle Program decided to no longer require 30 day extended mission duration capability and provided the EDO WCS to the ISS Program.
Technical Paper

The Development of the Wiped-Film Rotating-Disk Evaporator for the Reclamation of Water at Microgravity

2002-07-15
2002-01-2397
This project is a Phase III SBIR contract between NASA and Water Reuse Technology (WRT). It covers the redesign, modification, and construction of the Wiped-Film Rotating-Disk (WFRD) evaporator for use in microgravity and its integration into a Vapor Phase Catalytic Ammonia Removal (VPCAR) system. VPCAR is a water processor technology for long duration space exploration applications. The system is designed as an engineering development unit specifically aimed at being integrated into NASA Johnson Space Center's Bioregenerative Planetary Life Support Test Complex (BIO-Plex). The WFRD evaporator and the compressor are being designed and built by WRT. The balance of the VPCAR system and the integrated package are being designed and built by Hamilton Sundstrand Space Systems International, Inc. (HSSSI) under a subcontract with WRT. This paper provides a description of the VPCAR technology and the advances that are being incorporated into the unit.
Technical Paper

Development, Testing, and Packaging of a Redundant Regenerable Carbon Dioxide Removal System (RRCRS)

2002-07-15
2002-01-2530
Enhancements to the Regenerable Carbon Dioxide Removal System (RCRS) have undergone full-scale, pre-prototype development and testing to demonstrate a redundant system within the volume allotted for the RCRS on the Space Shuttle Orbiter. The concept for a Redundant Regenerable Carbon Dioxide Removal System (RRCRS) utilizes the existing canister of the RCRS, but partitions it into two, independent, two-bed systems. This partitioning allows for two, fully capable RCRS units to be packaged within the original volume, thus reducing stowage volume and launch weight when compared to the flight RCRS plus the backup LiOH system. This paper presents the results of development and testing of a full-scale, pre-prototype RRCRS and includes an overview of the design concept for a redundant system that can be packaged within the existing envelope.
X