Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Intention Aware Motion Planning with Model Predictive Control in Highway Merge Scenario

2019-03-25
2019-01-1402
Human drivers navigate by continuously predicting the intent of road users and interacting with them. For safe autonomous driving, research about predicting future trajectory of vehicles and motion planning based on these predictions has drawn attention in recent years. Most of these studies, however, did not take into account driver’s intentions or any interdependence with other vehicles. In order to drive safely in real complex driving situations, it is essential to plan a path based on other driver’s intentions and simultaneously to estimate the intentions of other road user with different characteristics as human drivers do. We aim to tackle the above challenges on highway merge scenario where the intention of other road users should be understood. In this study, we propose an intention aware motion planning method using finite state machine and model predictive control without any vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) communications.
Journal Article

A Predictive Energy Management Strategy Using a Rule-Based Mode Switch for Internal Combustion Engine (ICE) Vehicles

2017-03-28
2017-01-0584
With fuel efficiency becoming an increasingly critical aspect of internal combustion engine (ICE) vehicles, the necessity for research on efficient generation of electric energy has been growing. An energy management (EM) system controls the generation of electric energy using an alternator. This paper presents a strategy for the EM using a control mode switch (CMS) of the alternator for the (ICE) vehicles. This EM recovers the vehicle’s residual kinetic energy to improve the fuel efficiency. The residual kinetic energy occurs when a driver manipulates a vehicle to decelerate. The residual energy is commonly wasted as heat energy of the brake. In such circumstances, the wasted energy can be converted to electric energy by operating an alternator. This conversion can reduce additional fuel consumption. For extended application of the energy conversion, the future duration time of the residual power is exploited. The duration time is derived from the vehicle’s future speed profile.
Journal Article

Lifetime Prediction of DC-Link Film Capacitors using a Stochastic Model Combined by Random Variable and Gamma Process

2014-04-01
2014-01-0347
In electronic vehicles (EVs) or hybrid electronic vehicles (HEVs), an inverter system has a direct-current-link capacitor (DC-link capacitor) which provides reactive power, attenuates ripple current, reduces the emission of electromagnetic interference, and suppresses voltage spikes. A film capacitor has been used as the DC-link capacitor in high level power system, but the film capacitor's performance has deteriorated over operating time. The decreasing performance of the film capacitor may cause a problem when supplying and delivering energy from the battery to the vehicle's power system. Therefore, the lifetime prediction of the film capacitor could be one of critical factors in the EVs and HEVs. For this reason, the lifetime and reliability of the film capacitor are key factors to show the stability of the vehicle inverter system. There are a lot of methods to predict the lifetime of the film capacitor.
Technical Paper

Modeling and Parameterization Study of Fuel Consumption and Emissions for Light Commercial Vehicles

2014-03-24
2014-01-2020
This paper describes the effects of diverse driving modes and vehicle component characteristics impact on fuel efficiency and emissions of light commercial vehicles. The AVL's vehicle and powertrain system level simulation tool (CRUISE) was adopted in this study. The main input data such as the fuel consumption & emission map were based on the experimental value and vehicle components characteristic data (full load characteristic curves, gear shifting position curves, torque conversion curve etc.) and basic specifications (gross weight, gear ratio, tire radius etc.) were used based on the database or suggested value. The test database for two diesel vehicles adopted whether prediction accuracy of simulation data were converged in acceptable range. These data had been acquired from the portable emission measurement system, the exhaust emission and operating conditions (engine speed, vehicle speed, pedal position etc.) were acquired at each time step.
Technical Paper

Effect of Air-Conditioning on Driving Range of Electric Vehicle for Various Driving Modes

2013-03-25
2013-01-0040
Under the present effort to decrease of air pollution, Electric Vehicles (EVs) are appeared and developed. EVs are running by using electrical energy resource by supporting of battery packs. The effect of air-conditioning has proven to be a serious problem to the point of battery depleting. Thus in the present study, effects of air conditioning (i.e., cooling and heating) on driving range were studied for various driving modes including UDDS, HWFET, and NEDC. The result shows that EV energy efficiency is opposing the usual trend of internal combustion engine vehicle's fuel consumption in highway driving mode than urban driving mode. In highway mode, EV energy efficiency and driving range also decease than urban driving mode. This status was influenced on motor characteristic which torque decrease in high speed rotating conditions and highway driving mode consist of constant speed velocity so it couldn't use the regenerative braking system effectively.
Technical Paper

Fault Detection Algorithm Design for Electro-Mechanical Brake

2009-04-20
2009-01-1219
Electro-Mechanical Brake (EMB) systems can provide improved braking and stability functions such as ABS, EBD, TCS, ESC, BA, ACC, etc. For the implementation of the EMB systems, reliable and robust fault detection algorithm is required. In this study, a model-based fault detection algorithm is designed based on the analytical redundancy method in order to monitor possible faults in EMB systems. The performance of the proposed model-based fault detection algorithm is verified in simulations. The effectiveness of the proposed algorithm is demonstrated in various faulty cases.
Technical Paper

Real-time IMEP Estimation for Torque-based Engine Control using an In-cylinder Pressure Sensor

2009-04-20
2009-01-0244
A control method using an in-cylinder pressure sensor can directly and precisely control engine combustion, lowering harmful emissions and fuel consumption levels. However, this method cannot be applied to a conventional engine management system because of its inaccuracy and the high cost of the pressure sensor, as well as the high computational load. In this study, we propose a real-time IMEP estimation method for a common rail direct injection diesel engine using the difference pressure integral as a cylinder pressure variable. The proposed method requires less computational load, enabling the IMEP to be estimated in real-time. In addition, we validated the estimation algorithm through simulation and engine experiments. The IMEP was accurately estimated with a small root mean square error of below 0.2305 bar.
Journal Article

Effect of New Cooling System in a Diesel Engine on Engine Performance and Emission Characteristics

2009-04-20
2009-01-0177
Automotive manufacturers and engineers have paid attention to promoting engine performance with low emissions satisfying many emission regulations. With such goals in mind, we have investigated new cooling strategies such as high coolant temperature control, fast warm-up and post cooling using an automotive cooling system controlled by electronic actuators. The cooling system in a 2.7 liter HSDI engine was modified for the purpose of this study, and an engine experiment was carried out on a New European Drive Cycle (NEDC). The conventional water pump was decoupled from the engine and electronically controlled by a BLDC motor. Valves were installed at the coolant pathways between the engine and cooling components. Overall, this modification led to a reduction in both fuel consumption and exhaust gas emissions (e.g. THC, CO). The reduction was particularly considerable at the low speed and low load-drive conditions by controlling high temperature of the coolant.
Technical Paper

Smart Automotive Switch™ (SAS) for Improved Automotive Electronic Control Systems

2008-04-14
2008-01-1032
Electromechanical relays that are coupled with fuses have been used for controlling electrical loads in vehicles. In the past decade, semiconductor power switches have been developed for overcoming the physical limits of relays and fuses. Semiconductor power switches can not only replace relays and fuses but can also improve a system's reliability and efficiency. In this study, we introduce the Smart Automotive Switch (SAS), which is a smart high side power switch of Fairchild Korea semiconductor. Functional capabilities, such as power switching, protection and self-diagnosis of SASs are presented in case studies involving, for example, headlights, glow plugs, and fuel pump control systems. Through these experimental studies, the suitability of SASs is validated for designing improved automotive electronic control systems.
Journal Article

Validation of a Seamless Development Process for Real-time ECUs using OSEK-OS Based SILS/RCP

2008-04-14
2008-01-0803
An efficient development environments such as Software-in-the-Loop Simulation (SILS) and Rapid Control Prototyping (RCP) have been widely used to reduce the development time and cost of real-time ECUs. However, conventional SILS does not consider temporal behaviors caused by computation time, task scheduling, network-induced delays, and so on. As a result, the control performance of ECU is likely to be degraded after implementation. To overcome this problem, SILS/RCP which considers the temporal behaviors was suggested in the previous research. In this study, we validated the proposed SILS/RCP environments which are used to design an Electronic Stability Control (ESC) system which is one of the hard real-time control systems. The proposed SILS/RCP environments make it possible to realize ECUs in the early design phase by considering temporal behaviors.
Technical Paper

Model Based Optimization of Supervisory Control Parameters for Hybrid Electric Vehicles

2008-04-14
2008-01-1453
Supervisory control strategy of a hybrid electric vehicle (HEV) provides target powers and operating points of an internal combustion engine and an electric motor. To promise efficient driving of the HEV, it is needed to find the proper values of control parameters which are used in the strategy. However, it is very difficult to find the optimal values of the parameters by doing experimental tests, since there are plural parameters which have dependent relationship between each other. Furthermore variation of the test results makes it difficult to extract the effect of a specific parameter change. In this study, a model based parameter optimization method is introduced. A vehicle simulation model having the most of dynamics related to fuel consumption was developed and validated with various experimental data from real vehicles. And then, the supervisory control logic including the control parameters was connected to the vehicle model.
Journal Article

Formal Design Process for FlexRay-Based Control Systems with Network Parameter Optimization

2008-04-14
2008-01-0277
FlexRay is a deterministic and fault-tolerant in-vehicle network(IVN) protocol. It is expected to become a practical standard for automotive communication systems. According to the FlexRay protocol specifications, there are about 60 configurable parameters which should be determined in the design phases. The parameters increase the complexities of FlexRay-based control system development. In this study, we are suggesting a formal design process for FlexRay-based control systems, which is focused on network parameter optimization. We introduce design phases from functional system models to implementations. These phases present formal ways for task allocation, node assignment, network configuration, and implementations. In the network configuration phase, two FlexRay core parameters are selected to optimize network design. Optimal methods of the core parameters provide concise guide lines for optimal communication cycle length and optimal static slot length.
Technical Paper

A Fault Detection Method for Electric Parking Brake (EPB) Systems with Sensorless Estimation Using Current Ripples

2007-08-05
2007-01-3660
A fault detection method with parity equations is proposed in this paper. Due to low cost implementation, the velocity of a motor is not measurable in EPB systems. Therefore, residuals are not reliable with a low resolution encoder to estimate the motor velocity. In this paper, we propose a fault detection method with sensorless estimation using current ripples. The method estimates position and velocity of the motor by detecting periodical oscillations of the armature current caused by rotor slots. This method could estimate position and velocity of the motor with less computational effort than a state observer. Moreover, the method is less sensitive to motor parameters than model-based estimation methods. The effectiveness of this method is validated with experimental data. The simulation results show that various faults have their own residual patterns. Therefore, we could detect the fault by monitoring the residual signals.
Technical Paper

Sensor Fault Detection Algorithm for Continuous Damping Control(CDC) System

2007-08-05
2007-01-3560
This paper presents a model based sensor fault detection and isolation algorithm for the vertical acceleration sensors of the Continuous Damping Control (CDC) system, installed on the sprung mass. Since sensor faults of CDC system have a critical influence on the ride performance as well as the vehicle stability, the sensor fault detection algorithm must be implemented into the overall CDC algorithm. In this paper, each vertical acceleration sensor installed on the sprung mass (two in the front corners and one in the rear) separately estimates the vertical acceleration of the center of gravity of the sprung mass. Then, the sensor fault is detected by cross-checking all three vertical acceleration estimates independently obtained by the each vertical acceleration sensor.
Technical Paper

Software-in-the-Loop Simulation Environment Realization using Matlab/Simulink

2006-04-03
2006-01-1470
This paper presents the Matlab/Simulink-based Software-in-the-Loop Simulation (SILS) tool which is the co-simulator for temporal and functional simulations of control systems. The temporal behavior of a control system is mainly dependent on the implemented software and hardware such as the real-time operating system, target CPU and communication protocol. In this research, the SILS components with temporal attributes are specified as tasks, task executions, real-time schedulers, and real-time networks. Methods for realizing these components in graphical block representations are investigated with Matlab/Simulink, which is the most commonly used tool for designing and simulating control algorithms in control engineering. These components are modeled in graphical blocks of Matlab/Simulink.
Technical Paper

A Sampling Period Decision for Robust Control of Distributed Control System using In-Vehicle Network

2004-03-08
2004-01-0211
This paper presents a preliminary study of a sampling period decision for robust control of a distributed control system based on an in-vehicle network with three types of data (real-time synchronous data, real-time asynchronous data, and nonreal-time asynchronous data). The architecture of automotive systems is currently changing from a number of standalone electronic control units (ECUs) to a functionally integrated distributed system which is linked by a network. The control performance of the integrated networked control system can be changed by the characteristics of time delays among the application ECUs. A basic parameter for a scheduling method of the networked control systems, a maximum allowable delay bound is used, which guarantees stability of the networked control system, and it is derived from the characteristics of the given plant using presented theorems.
Technical Paper

Development of a Vehicle Electric Power Simulator for Optimizing the Electric Charging System

2000-03-06
2000-01-0451
The electric power system of a modern vehicle has to supply enough electrical energy to numerous electrical and electronic systems. The electric power system of a vehicle consists of two major components: a generator and a battery. A detailed understanding of the characteristics of the electric power system, electrical load demands, and the driving environment such as road, season, and vehicle weight are required when the capacities of the generator and the battery are to be determined for a vehicle. In order to avoid the over/under design problem of the electric power system, an easy-to-use and inexpensive simulation program may be needed. In this study, a vehicle electric power simulator is developed. The simulator can be utilized to determine the optimized capacities of generators and batteries appropriately. To improve the flexibility and easy usage of the simulation program, the program is organized in modular structures, and is run on a PC.
X