Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Hybrid Shape Optimization and Failure Analysis of Laminated Fibrous Composite E-Springs for Vehicle Suspension

2006-10-31
2006-01-3586
A hybrid search optimization is presented in order to optimize hybrid laminated fibrous composite E-springs for vehicle suspension systems. This optimization is conducted with both of the geometrical configuration and laminate structure of the E-spring. A genetic algorithm along with a hill-climbing random-walk approach are used through a developed NURBS-based technique in order to conduct this optimization. A mathematical-modeling-based mid-ware technology is introduced in order to fully automate the optimization process through linking the run engines of mathematical modeling and finite element analysis from within the mathematical modeling engine. A hybrid approach of the inter-laminar shear stress and Tsai-Wu criteria is first implemented in order to identify failure indices of the resulting optimum shape and laminate structure.
Technical Paper

Experimental Investigation and Hybrid Failure Analysis of Micro-Composite E-Springs for Vehicle Suspension Systems

2006-10-31
2006-01-3515
E-spring is a recent innovation in vehicle suspension springs. Its behavior and characteristics are investigated experimentally and verified numerically. The mechanical and frequency-response-based properties of E-springs are investigated experimentally at both of the structural and constitutional levels. Thermoplastic-based and thermoset-based fibrous composite structures of the E-springs are modified at micro-scale with various additives and consequently they are compared. The experimental results reveal that additives of micrometer-sized particles of mineral clay to an ISO-phthalic polyester resin of the composite E-spring can demonstrate distinguished characteristics. A hybrid approach of the inter-laminar shear stress and Tsai-Wu criteria is implemented in order to identify failure indices numerically at the utmost level of loading and verify the experimental results.
X