Refine Your Search

Topic

Search Results

Technical Paper

Evaluation of Semi-Active Vehicle Suspension System Performance Incorporating Magnetorheological Damper Using Optimized Feedback Controller Based on State-Derivative

2024-04-09
2024-01-2288
The purpose of this paper is to investigate the efficiency of a quarter car semi-active suspension system with the state-derivative feedback controller using the Bouc-Wen model for magneto-rheological fluids. The magnetorheological (MR) dampers are classified as adaptive devices because of their characteristics can be easily modified by applying a controlled voltage signal. Semi-active suspension with MR dampers combines the benefits of active and passive suspension systems. The dynamic system captures the basic performance of the suspension, including seat travel distance, body acceleration, passenger acceleration, suspension travel distance, dynamic tire deflection and damping force. With minimal reliance on the use of sensors, the investigation aims to improve ride comfort and vehicle stability. In this study, the state derivative feedback controller and Genetic algorithm (GA) is utilized to improve the performance of semi-active suspension system.
Technical Paper

Vibration Control of MR-Damped Half Truck Suspension System Using Proportional Integral Derivative Controller Tuned by Ant Colony Optimization

2024-04-09
2024-01-2289
Proportional integral derivative (PID) control technique is a famous and cost-effective control strategy, in real implementation, applied in various engineering applications. Also, the ant colony optimization (ACO) algorithm is extensively applied in various industrial problems. This paper addresses the usage of the ACO algorithm to tune the PID controller gains for a semi-active heavy vehicle suspension system integrated with cabin and seat. The magnetorheological (MR) damper is used in main suspension as a semi-active device to enhance the ride comfort and vehicle stability. The proposed semi-active suspension consists of a system controller that calculate the desired damping force using a PID controller tuned using ACO, and a continuous state damper controller that predict the input voltage that is required to track the desired damping force.
Technical Paper

Ride Comfort Enhancement of Railway Vehicles Using Magnetorheological Damper

2024-04-09
2024-01-2291
The study investigates the ride comfort of a rail vehicle with semi-active suspension control and its effect on train vertical dynamics. The Harmony Search algorithm optimizes the gains of a proportional integral derivative (PID) controller using the self-adaptive global best harmony search method (SGHS) due to its effectiveness in reducing the tuning time and offering the least objective function value. Magnetorheological (MR) dampers are highly valuable semi-active devices for vibration control applications rather than active actuators in terms of reliability and implementation cost. A quarter-rail vehicle model consisting of six degrees of freedom (6-DOF) is simulated using MATLAB/Simulink software to evaluate the proposed controller's effectiveness. The simulated results show that the optimized PID significantly improves ride comfort compared to passive.
Technical Paper

Interval Lower Singleton Fuzzy Optimal Controller Design of Magnetorheological Seat Suspension Integrated with Semi-Active Vehicle Suspension System

2023-09-22
2023-01-5066
In this paper, semi-active MR main suspension system based on system controller design to minimize pitch motion linked with MR-controlled seat suspension by considering driver’s biodynamics is investigated. According to a fixed footprint tire model, the transmitted tire force is determined. The linear-quadratic Gaussian (LQG) system controller is able to enhance ride comfort by adjusting damping forces based on an evaluation of body vibration from the dynamic responses. The controlled damping forces are tracked by the signum function controllers to evaluate the supply voltages for the front and rear MR dampers. Based on the sprung mass acceleration level and its derivative as the inputs, the optimal type-2 (T-2) fuzzy seat system controller is designed to regulate the controlled seat MR damper force.
Technical Paper

Optimized PID Controller Using Genetic Algorithm for Anti-lock Brake System

2023-04-11
2023-01-0696
The anti-lock brake system (ABS) is a vital system in modern vehicles that prevents automotive wheels from locking during an emergency brake. This paper aims to introduce an efficient, optimized proportional integral derivative (PID) controller tuned using a genetic algorithm (GA) to enhance the performance of ABS. The PID control method is a very famous control algorithm employed in numerous engineering applications. The GA is used to solve the nonlinear optimization problem and search for the optimum PID controller gains by identifying the solution to the problem. A mathematical model of ABS is derived and simulated using Matlab and Simulink software. The proposed optimized PID-controlled ABS is compared to the conventional ABS controlled using a Bang-Bang controller. System performance criteria are evaluated and assessed under different road adhesion coefficient values to judge the success of the proposed PID controller tuned using GA.
Technical Paper

Enhancement of Semi-active Vehicle Suspension System Performance Using Magnetorheological Damper

2022-03-11
2022-01-5018
Vehicle suspension is considered a vital system of modern automotive and necessary to offer an adequate level of ride comfort and roadholding. In the present paper, a fuzzy-based sliding surface (FBSS) controller is designed, as a system controller for the first time, for a semi-active vehicle suspension using a magnetorheological (MR) damper in order to minimize the transmitted unwanted vibrations to the passengers. Therefore, an ideal reference skyhook model is employed to construct the sliding surface, which is the input of fuzzy logic. MR damper is a semi-active device and is controlled indirectly using an external voltage source. So a neural-based damper controller is used to compute the applied voltage to the magnet coil of the MR damper in series with the FBSS system controller. The proposed semi-active controlled quarter-vehicle suspension using an MR damper is solved numerically by Matlab.
Technical Paper

A Preview Type-2 Fuzzy Controller Design for the Semi-active Suspension to Improve Adhesion Characteristics during Braking and Handling

2021-06-28
2021-01-5069
A full vehicle of a preview control semi-active suspension system based on an interval type-2 fuzzy controller design using a magnetorheological (MR) damper to improve ride comfort is investigated in this paper. It is integrated with the force distribution system to obtain the optimal rate of road adhesion during braking and handling. The nonlinear suspension model is derived by considering vertical, pitch, and roll motions. The preview interval type-2 fuzzy technique is designed as a system controller, and it is attached with a Signum function method as a damper controller to turn on the voltage for the MR damper. This voltage is adjusted for each wheel based on the external excitation generated by road roughness in order to enhance ride comfort. To describe the effectiveness and adaptable responses of the preview controlled semi-active system, the performance is compared with both the passive and MR passive suspension systems during time and frequency domains.
Technical Paper

Investigation of Different Parameter Based Control Strategies for Active Independent Front Steering (AIFS) System

2021-04-06
2021-01-0967
The previous research work on Active Independent Front Steering (AIFS) system concluded an enhanced vehicle response and tire adhesion utilization. Some research emphasizes the importance of Tire Work load (TWL) in the generation of maximum possible tire forces that ensures vehicle controllability and stability. In this study, a mathematical model is constructed to investigate the effect of TWL as a parameter on AIFS performance. Toward such a target, a new Fuzzy control strategy is developed based on TWL and vehicle yaw rate as control inputs for the AIFS controller. Unfortunately, the TWL is not a measurable parameter or even easy to be estimated. Consequently, another control strategy was implemented based on slip angle and vehicle yaw rate as inputs for the AIFS controller.
Technical Paper

Investigation of the Interaction between the Vehicle Vertical Vibration and Driveline Torsional Vibration Using A Hydro-Pneumatic Limited Bandwidth Active Suspension System

2021-04-06
2021-01-0700
1 Rear wheel drive vehicles have a long driveline using a propeller shaft with two universal joints. Consequently, in this design usage of universal joints within vehicle driveline is inevitable. However, the angularity of the driveshaft resulting from vertical oscillations of the rear axle causes many torsional and bending fluctuations of the driveline. Unfortunately, most of the previously published research work in this area assume the propeller inclination angle is constant under all operating conditions. As a matter of fact, this assumption is not accurate due to the vehicle body attitudes either in pitch or bounce motions. Where the vehicle vibration due to the suspension flexibility, either passive or active type, exists.
Technical Paper

Effect of Semi-active Suspension Controller Design Using Magnetorheological Fluid Damper on Vehicle Traction Performance

2020-10-30
2020-01-5101
In order to achieve the high capability of the ride comfort and regulating the tire slip ratio, a preview of a nonlinear semi-active vibration control suspension system using a magnetorheological (MR) fluid damper is integrated with traction control in this paper. A controlled semi-active suspension system, which consists of the system controller and damper controller, was used to develop ride comfort, while the traction controller is utilized to reduce a generated slip between the vehicle speed and rotational rate of the tire. Both Fractional-Order Filtered Proportional-Integral-Derivative (P¯IλDμ) and Fuzzy Logic connected either series or parallel with P¯IλDμ are designed as various methodologies of a system controller to generate optimal tracking of the desired damping force. The signum function method is modified as a damper controller to calculate an applied input voltage to the MR damper coil based on both preview signals and the desired damping force tracking.
Technical Paper

Vibration Control of Semi-Active Vehicle Suspension System Incorporating MR Damper Using Fuzzy Self-Tuning PID Approach

2020-04-14
2020-01-1082
In this paper, a nonlinear semi-active vehicle suspension system using MR fluid dampers is investigated to enhance ride comfort and vehicle stability. Fuzzy logic and fuzzy self-tuning PID control techniques are applied as system controllers to compute desired front and rear damping forces in conjunction with a Signum function method damper controller to assess force track-ability of system controllers. The suggested fuzzy self-tuning PID operates fuzzy system as a PID gains tuner to mitigate the vehicle vibration levels and achieve excellent performance related to ride comfort and vehicle stability. The equations of motion of four-degrees-of-freedom semi-active half-vehicle suspension system incorporating MR dampers are derived and simulated using Matlab/Simulink software.
Technical Paper

Vibration Control of an Active Seat Suspension System Integrated Pregnant Woman Body Model

2019-04-02
2019-01-0172
Proportional-integral-derivative (PID) controller is effective, popular and cost effective for a lot of scientific and engineering applications. In this paper, PID and fuzzy-self-tuning PID (FSTPID) controllers are applied to improve the performance of an active seat suspension system to enhance the pregnant woman comfort. The equations of motion of thirteen-degrees-of-freedom (13-DOF) active seat suspension system incorporating pregnant woman body model are derived and simulated. PID gains are tuned and estimated using genetic algorithm (GA) to formulate GA PID controller. In FSTPID, fuzzy logic technique is used to tune PID controller gains by selecting appropriate fuzzy rules using Matlab/Simulink software. Both controlled active seat suspension systems are compared with a passive seat suspension. Suspension performance is evaluated under bump and random road excitations in order to verify the success of the proposed controllers.
Technical Paper

Application of a Preview Control with an MR Damper Model Using Genetic Algorithm in Semi-Active Automobile Suspension

2019-02-05
2019-01-5006
A non-linear mathematical model of a semi-active (2DOF) vehicle suspension using a magnetorheological (MR) damper with information concerning the road profile ahead of the vehicle is proposed in this paper. The semi-active vibration control system using an MR damper consists of two nested controllers: a system controller and a damper controller. The fuzzy logic technique is used to design the system controller based on both the dynamic responses of the suspension and the Padé approximation algorithm method of a preview control to evaluate the desired damping force. In addition, look-ahead preview of the excitations resulting from road irregularities is used to quickly mitigate the effect of the control system time delay on the damper response.
Technical Paper

Vibration Control of Active Vehicle Suspension System Using Optimized Fuzzy-PID

2018-04-03
2018-01-1402
In this paper, a fuzzy-PID controller is applied in a half vehicle active suspension system to enhance vibration levels of vehicle chassis and passenger seat. The fuzzy-PID controller consists of fuzzy and PID connecting in a series manner, the fuzzy output is considered as the PID input. Genetic Algorithm (GA) is selected to tune controller parameters to obtain optimal values that minimize the objective function. The equations of motion of five-degrees-of-freedom active half-vehicle suspension system are derived and simulated using Matlab/Simulink software. Double bumps and random road excitations are used to study the performance of suspension systems including bounce and pitch motion. The performance of the active suspension system using optimized fuzzy-PID controller is compared with conventional passive to show the efficiency of the proposed active suspension system.
Journal Article

Value of Optimal Wavelet Function in Gear Fault Diagnosis

2017-06-05
2017-01-1771
Gear fault diagnosis is important in the vibration monitoring of any rotating machine. When a localized fault occurs in gears, the vibration signals always display non-stationary behavior. In early stage of gear failure, the gear mesh frequency (GMF) contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. This paper presents the value of optimal wavelet function for early detection of faulty gear. The Envelope Detection (ED) and the Energy Operator are used for gear fault diagnosis as common techniques with and without the proposed optimal wavelet to verify the effectiveness of the optimal wavelet function. Kurtosis values are determined for the previous techniques as an indicator parameter for the ability of early gear fault detection. The comparative study is applied to real vibration signals.
Technical Paper

On The Integration of Actively Controlled Longitudinal/Lateral Dynamics Chassis Systems

2014-04-01
2014-01-0864
Integral Control strategy for vehicle chassis systems had been of great interest for vehicle designers in the last decade. This paper represents the interaction of longitudinal control and lateral control. In other words the traction control system and handling control system. Definitely, tire properties are playing a vital role in such interaction as it is responsible for the generated forces in both directions. A seven degrees of freedom half vehicle model is derived and used to investigate this interaction. The vehicle body is represented as a rigid body with three degrees of freedom, lateral and longitudinal, and yaw motions. The other four degrees are the two rotation motion of the front wheel and the rear wheel. This two motions for each wheel are spin motion and the steering motion. The traction controller is designed to modulate engine torque through adjusting the throttle angle of the engine upon utilized adhesion condition at the driving road wheels.
Journal Article

Application of Nonparametric Magnetorheological Damper Model in Vehicle Semi-active Suspension System

2012-04-16
2012-01-0977
Nonparametric models do not require any assumptions on the underlying input/output relationship of the system being modeled so that they are highly useful for studying and modeling the nonlinear behaviour of Magnetorheological (MR) fluid dampers. However, the application of these models in semi-active suspension is very rare and most theoretical works available on this topic address the application of parametric models (e.g. Modified Bouc-Wen model). In this paper, a nonparametric MR damper model based on the Restoring Force Surface technique is applied in vehicle semi-active suspension system. It consists of a three dimensional interpolation using Chebyshev orthogonal polynomial functions to simulate the MR damper force as a function of the displacement, velocity and input voltage. Also, a damper controller based on a Signum function method is proposed, for the first time, for use in conjunction with the system controller of a semi-active vehicle suspension.
Technical Paper

Vehicle Alternator Electromagnetic Noise Characteristics Determination

2009-05-19
2009-01-2188
In the design of recreational vehicle alternators, a particular challenge arises from marketing and engineering teams' desire to ensure that their products meet “best in class” sound quality characteristics. Furthermore, it is desirable to know these characteristics in measurable engineering terms in the product design stage, preferably before prototypes are built and tested. However, the aim of this paper is to investigate experimentally the electromagnetic sound quality characteristics of a vehicle alternator with the view of determination. For this reason, a special test rig was designed to simulate the alternator electromagnetic noise source. The results indicate that significant information can be obtained for this source. This can be an effective way to control this generated noise and consequently improve the vehicle alternator sound quality and look promising.
Technical Paper

Integrated Control, Regulated DC Supply with High Power Quality for Automotive Applications

2008-10-07
2008-01-2710
The DC power supply is ingredient part in the automotive industries as it has been used as a DC power supplies for a wide range of loads. Meanwhile, it is mandatory for battery charging. These types however, causes many problems such as poor power factor, high input current harmonics distortion and uncontrolled DC voltage. In this paper, an improved input power factor correction that uses a combined control system consists of two nested loops with a feedback of the DC voltage and input current as long as a feed forward from the output power. The system has been analyzed, modeled, simulated and experimentally verified. The novel feature of the proposed control scheme resides in fact that it is not only achieve nearly unity power factor with minimum input current total harmonics distortion only but it also introduce superior performance in DC voltage transient conditions.
Technical Paper

A Novel Hybrid Roll Control Strategy for Partially Loaded Tanker Trucks

2003-11-10
2003-01-3386
In this paper, a hybrid roll control system, including passive and active roll control units, is designed to improve the roll dynamics of tanker vehicles and to reduce the lateral shifts of the liquid cargo due to lateral accelerations. The passive control system consists of radial partitions installed inside the vehicle container. These partitions rotate in phase with the liquid cargo as one unit about the longitudinal axis of the container in response to the induced momentum forces due to the lateral acceleration excitation. Torsion dampers are fixed between the partitions and the container's front and rear walls to reduce the oscillating motion of the liquid cargo. While the passive partition dampers control the dynamics of the liquid cargo inside the container, the dampers of the vehicle suspension are switchable, generating anti-roll damping moments based on the lateral acceleration level and the container filling ratio.
X