Refine Your Search

Topic

Search Results

Technical Paper

Evaluation of Semi-Active Vehicle Suspension System Performance Incorporating Magnetorheological Damper Using Optimized Feedback Controller Based on State-Derivative

2024-04-09
2024-01-2288
The purpose of this paper is to investigate the efficiency of a quarter car semi-active suspension system with the state-derivative feedback controller using the Bouc-Wen model for magneto-rheological fluids. The magnetorheological (MR) dampers are classified as adaptive devices because of their characteristics can be easily modified by applying a controlled voltage signal. Semi-active suspension with MR dampers combines the benefits of active and passive suspension systems. The dynamic system captures the basic performance of the suspension, including seat travel distance, body acceleration, passenger acceleration, suspension travel distance, dynamic tire deflection and damping force. With minimal reliance on the use of sensors, the investigation aims to improve ride comfort and vehicle stability. In this study, the state derivative feedback controller and Genetic algorithm (GA) is utilized to improve the performance of semi-active suspension system.
Technical Paper

Vibration Control of MR-Damped Half Truck Suspension System Using Proportional Integral Derivative Controller Tuned by Ant Colony Optimization

2024-04-09
2024-01-2289
Proportional integral derivative (PID) control technique is a famous and cost-effective control strategy, in real implementation, applied in various engineering applications. Also, the ant colony optimization (ACO) algorithm is extensively applied in various industrial problems. This paper addresses the usage of the ACO algorithm to tune the PID controller gains for a semi-active heavy vehicle suspension system integrated with cabin and seat. The magnetorheological (MR) damper is used in main suspension as a semi-active device to enhance the ride comfort and vehicle stability. The proposed semi-active suspension consists of a system controller that calculate the desired damping force using a PID controller tuned using ACO, and a continuous state damper controller that predict the input voltage that is required to track the desired damping force.
Technical Paper

Ride Comfort Enhancement of Railway Vehicles Using Magnetorheological Damper

2024-04-09
2024-01-2291
The study investigates the ride comfort of a rail vehicle with semi-active suspension control and its effect on train vertical dynamics. The Harmony Search algorithm optimizes the gains of a proportional integral derivative (PID) controller using the self-adaptive global best harmony search method (SGHS) due to its effectiveness in reducing the tuning time and offering the least objective function value. Magnetorheological (MR) dampers are highly valuable semi-active devices for vibration control applications rather than active actuators in terms of reliability and implementation cost. A quarter-rail vehicle model consisting of six degrees of freedom (6-DOF) is simulated using MATLAB/Simulink software to evaluate the proposed controller's effectiveness. The simulated results show that the optimized PID significantly improves ride comfort compared to passive.
Technical Paper

Interval Lower Singleton Fuzzy Optimal Controller Design of Magnetorheological Seat Suspension Integrated with Semi-Active Vehicle Suspension System

2023-09-22
2023-01-5066
In this paper, semi-active MR main suspension system based on system controller design to minimize pitch motion linked with MR-controlled seat suspension by considering driver’s biodynamics is investigated. According to a fixed footprint tire model, the transmitted tire force is determined. The linear-quadratic Gaussian (LQG) system controller is able to enhance ride comfort by adjusting damping forces based on an evaluation of body vibration from the dynamic responses. The controlled damping forces are tracked by the signum function controllers to evaluate the supply voltages for the front and rear MR dampers. Based on the sprung mass acceleration level and its derivative as the inputs, the optimal type-2 (T-2) fuzzy seat system controller is designed to regulate the controlled seat MR damper force.
Technical Paper

Identification of the Nonlinear Dynamic Behavior of Magnetorheological Fluid Dampers using Adaptive Neuro-Fuzzy Inference System

2023-04-11
2023-01-0123
Adaptive neuro-fuzzy inference system (ANFIS) technique has been developed and applied by numerous researchers as a very useful predictor for nonlinear systems. In this paper, non-parametric models have been investigated to predict the direct and inverse nonlinear dynamic behavior of magnetorheological (MR) fluid dampers using ANFIS technique to demonstrate more accurate and efficient models. The direct ANFIS model can be used to predict the damping force of the MR fluid damper and the inverse dynamic ANFIS model can be used to offer a suitable command voltage applied to the damper coil. The architectures and the learning details of the direct and inverse ANFIS models for MR fluid dampers are introduced and simulation results are discussed. The suggested ANFIS models are used to predict the damping force of the MR fluid damper accurately and precisely. Moreover, validation results for the ANFIS models are proposed and used to evaluate their performance.
Technical Paper

Controller Design for Path Tracking of Autonomous Vehicle Incorporating Four-Wheel Steering System

2022-03-29
2022-01-0299
This research aims to model and assess autonomous vehicle controller while including a four-wheel steering and longitudinal speed control. Such a modeling process simulates human driver behavior with consideration of real vehicle dynamics’ characteristics during standard maneuvers. However, a four-wheel steering control improves vehicle stability and maneuverability as well. A three-degree of freedom bicycle model, lateral deviation, yaw angle, and longitudinal speed is constructed to describe vehicle dynamics’ behavior. Moreover, a comprehensive traction model is implemented which includes an engine, automatic transmission, and non-linear magic formula tire model for simulation of vehicle longitudinal dynamics. A combination of proportional integral derivative (PID) longitudinal controller and fuzzy lateral controller are implemented simultaneously to track the desired vehicle path while minimizing lateral deviation and yaw angle errors.
Technical Paper

Enhancement of Semi-active Vehicle Suspension System Performance Using Magnetorheological Damper

2022-03-11
2022-01-5018
Vehicle suspension is considered a vital system of modern automotive and necessary to offer an adequate level of ride comfort and roadholding. In the present paper, a fuzzy-based sliding surface (FBSS) controller is designed, as a system controller for the first time, for a semi-active vehicle suspension using a magnetorheological (MR) damper in order to minimize the transmitted unwanted vibrations to the passengers. Therefore, an ideal reference skyhook model is employed to construct the sliding surface, which is the input of fuzzy logic. MR damper is a semi-active device and is controlled indirectly using an external voltage source. So a neural-based damper controller is used to compute the applied voltage to the magnet coil of the MR damper in series with the FBSS system controller. The proposed semi-active controlled quarter-vehicle suspension using an MR damper is solved numerically by Matlab.
Technical Paper

A Preview Type-2 Fuzzy Controller Design for the Semi-active Suspension to Improve Adhesion Characteristics during Braking and Handling

2021-06-28
2021-01-5069
A full vehicle of a preview control semi-active suspension system based on an interval type-2 fuzzy controller design using a magnetorheological (MR) damper to improve ride comfort is investigated in this paper. It is integrated with the force distribution system to obtain the optimal rate of road adhesion during braking and handling. The nonlinear suspension model is derived by considering vertical, pitch, and roll motions. The preview interval type-2 fuzzy technique is designed as a system controller, and it is attached with a Signum function method as a damper controller to turn on the voltage for the MR damper. This voltage is adjusted for each wheel based on the external excitation generated by road roughness in order to enhance ride comfort. To describe the effectiveness and adaptable responses of the preview controlled semi-active system, the performance is compared with both the passive and MR passive suspension systems during time and frequency domains.
Technical Paper

Investigation of the Interaction between the Vehicle Vertical Vibration and Driveline Torsional Vibration Using A Hydro-Pneumatic Limited Bandwidth Active Suspension System

2021-04-06
2021-01-0700
1 Rear wheel drive vehicles have a long driveline using a propeller shaft with two universal joints. Consequently, in this design usage of universal joints within vehicle driveline is inevitable. However, the angularity of the driveshaft resulting from vertical oscillations of the rear axle causes many torsional and bending fluctuations of the driveline. Unfortunately, most of the previously published research work in this area assume the propeller inclination angle is constant under all operating conditions. As a matter of fact, this assumption is not accurate due to the vehicle body attitudes either in pitch or bounce motions. Where the vehicle vibration due to the suspension flexibility, either passive or active type, exists.
Technical Paper

Theoretical Investigation of Spokes Geometry of Non-Pneumatic Tires for Off-Road Vehicles

2021-04-06
2021-01-0331
Extensive studies of off-road non-pneumatic tires (NPTs) were conducted for light and heavy equipment due to their advantages over conventional pneumatic tires in terms of low rolling resistance, thus no need for air pressure maintenance. Finite element (FE) simulations of NPT contact pressure, contact shear stress, vertical stiffness, von mises stress, and rolling resistance were performed using ABAQUS software in a series of vertical loads to simulate tire models of three different spokes geometries on unpaved soil to verify NPT performance under different conditions. The spokes geometries were hexagonal (honeycomb) spoke, hexagonal re-entrant (Lattice) spoke and spoke with curvature called spoke pairs. It was found that the rolling resistance of the honeycomb structure has the lowest value, while the contact shear stress and contact pressure were the highest.
Technical Paper

Effect of Semi-active Suspension Controller Design Using Magnetorheological Fluid Damper on Vehicle Traction Performance

2020-10-30
2020-01-5101
In order to achieve the high capability of the ride comfort and regulating the tire slip ratio, a preview of a nonlinear semi-active vibration control suspension system using a magnetorheological (MR) fluid damper is integrated with traction control in this paper. A controlled semi-active suspension system, which consists of the system controller and damper controller, was used to develop ride comfort, while the traction controller is utilized to reduce a generated slip between the vehicle speed and rotational rate of the tire. Both Fractional-Order Filtered Proportional-Integral-Derivative (P¯IλDμ) and Fuzzy Logic connected either series or parallel with P¯IλDμ are designed as various methodologies of a system controller to generate optimal tracking of the desired damping force. The signum function method is modified as a damper controller to calculate an applied input voltage to the MR damper coil based on both preview signals and the desired damping force tracking.
Technical Paper

An Investigation Study of the Thermomechanical Loading on the Piston of a Diesel Engine with Design Improvements

2020-10-22
2020-01-5098
The latest developments in the engine’s design aim to maximize the power output, downsize the engine, and minimize the fuel consumption. This paper investigates the thermomechanical loads on the piston of a turbocharged diesel engine. The main emphasis is the effect of increasing the boosting pressure on the piston loading until the possible maximum engine power is achieved. Also, it proposes the modification of the piston design in order to increase the durability for more power loading and decrease the total mass. The temperature distribution on the piston body, the corresponding thermomechanical deformations, the stress distribution, and the safety factor is excessively calculated. Finite element methods (ANSYS workbench) is used to analyze the thermomechanical loads applied to a three-dimensional model. The study is applied to the piston of a 300 hp diesel engine (base case) in order to increase the engine power by 17% (upgraded one).
Technical Paper

Vibration Control of Semi-Active Vehicle Suspension System Incorporating MR Damper Using Fuzzy Self-Tuning PID Approach

2020-04-14
2020-01-1082
In this paper, a nonlinear semi-active vehicle suspension system using MR fluid dampers is investigated to enhance ride comfort and vehicle stability. Fuzzy logic and fuzzy self-tuning PID control techniques are applied as system controllers to compute desired front and rear damping forces in conjunction with a Signum function method damper controller to assess force track-ability of system controllers. The suggested fuzzy self-tuning PID operates fuzzy system as a PID gains tuner to mitigate the vehicle vibration levels and achieve excellent performance related to ride comfort and vehicle stability. The equations of motion of four-degrees-of-freedom semi-active half-vehicle suspension system incorporating MR dampers are derived and simulated using Matlab/Simulink software.
Technical Paper

Vibration Control of an Active Seat Suspension System Integrated Pregnant Woman Body Model

2019-04-02
2019-01-0172
Proportional-integral-derivative (PID) controller is effective, popular and cost effective for a lot of scientific and engineering applications. In this paper, PID and fuzzy-self-tuning PID (FSTPID) controllers are applied to improve the performance of an active seat suspension system to enhance the pregnant woman comfort. The equations of motion of thirteen-degrees-of-freedom (13-DOF) active seat suspension system incorporating pregnant woman body model are derived and simulated. PID gains are tuned and estimated using genetic algorithm (GA) to formulate GA PID controller. In FSTPID, fuzzy logic technique is used to tune PID controller gains by selecting appropriate fuzzy rules using Matlab/Simulink software. Both controlled active seat suspension systems are compared with a passive seat suspension. Suspension performance is evaluated under bump and random road excitations in order to verify the success of the proposed controllers.
Technical Paper

Application of a Preview Control with an MR Damper Model Using Genetic Algorithm in Semi-Active Automobile Suspension

2019-02-05
2019-01-5006
A non-linear mathematical model of a semi-active (2DOF) vehicle suspension using a magnetorheological (MR) damper with information concerning the road profile ahead of the vehicle is proposed in this paper. The semi-active vibration control system using an MR damper consists of two nested controllers: a system controller and a damper controller. The fuzzy logic technique is used to design the system controller based on both the dynamic responses of the suspension and the Padé approximation algorithm method of a preview control to evaluate the desired damping force. In addition, look-ahead preview of the excitations resulting from road irregularities is used to quickly mitigate the effect of the control system time delay on the damper response.
Technical Paper

Vibration Control of Active Vehicle Suspension System Using Optimized Fuzzy-PID

2018-04-03
2018-01-1402
In this paper, a fuzzy-PID controller is applied in a half vehicle active suspension system to enhance vibration levels of vehicle chassis and passenger seat. The fuzzy-PID controller consists of fuzzy and PID connecting in a series manner, the fuzzy output is considered as the PID input. Genetic Algorithm (GA) is selected to tune controller parameters to obtain optimal values that minimize the objective function. The equations of motion of five-degrees-of-freedom active half-vehicle suspension system are derived and simulated using Matlab/Simulink software. Double bumps and random road excitations are used to study the performance of suspension systems including bounce and pitch motion. The performance of the active suspension system using optimized fuzzy-PID controller is compared with conventional passive to show the efficiency of the proposed active suspension system.
Journal Article

Analysis of Vehicle Lateral Dynamics due to Variable Wind Gusts

2014-09-30
2014-01-2449
This study presents a practical theoretical method to judge the aerodynamic response of buses in the early design stage based on both aerodynamic and design parameters. A constant longitudinal velocity 2-DOF vehicle lateral dynamics model is used to investigate the lateral response of a bus under nine different wind gusts excitations. An appropriate 3-D CFD simulation model of the bus shape results is integrated with carefully chosen design parameters data of a real bus chassis and body to obtain vehicle lateral dynamic response to the prescribed excitations. Vehicle model validity is carried out then, the 2-DOF vehicle lateral dynamics model has been executed in MATLAB Simulink environment with the selected data. Simulation represents the vehicle in a straight ahead path then entered a gusting wind section of the track with a fixed steering wheel. Vehicle response includes lateral deviation (LD), lateral acceleration (LA), yaw angle (YA) and yaw rate (YR).
Technical Paper

On The Integration of Actively Controlled Longitudinal/Lateral Dynamics Chassis Systems

2014-04-01
2014-01-0864
Integral Control strategy for vehicle chassis systems had been of great interest for vehicle designers in the last decade. This paper represents the interaction of longitudinal control and lateral control. In other words the traction control system and handling control system. Definitely, tire properties are playing a vital role in such interaction as it is responsible for the generated forces in both directions. A seven degrees of freedom half vehicle model is derived and used to investigate this interaction. The vehicle body is represented as a rigid body with three degrees of freedom, lateral and longitudinal, and yaw motions. The other four degrees are the two rotation motion of the front wheel and the rear wheel. This two motions for each wheel are spin motion and the steering motion. The traction controller is designed to modulate engine torque through adjusting the throttle angle of the engine upon utilized adhesion condition at the driving road wheels.
Technical Paper

Modeling of Vehicle Drum Brake for Contact Analysis Using Ansys

2012-09-17
2012-01-1810
A non-contact analysis of a drum brake based on three-dimensional Finite Element analysis using Ansys is presented. The effect of drum-lining interface stiffness and line pressure on the interface contact is examined. The modal analysis of the vehicle drum brake is also studied to get the natural frequency and instability of the drum. It is shown that the unsymmetric modal analysis is efficient enough to solve this linear problem after transforming the non-linear behaviour of the contact between the drum and the lining to a linear behavior. A linear element which is used in the modal analysis is transferred to non-linear elements which are Targe170 and Conta173 that represent the drum and lining to study the contact analysis. The contact analysis problems are highly non-linear and require significant computer resources to solve it, however, the contact problem give two significant difficulties.
Technical Paper

Performance of Active Suspension with Fuzzy Control

2009-05-13
2009-01-1614
Vehicle suspension along with tires and steering linkages is designed for safe vehicle control and to be free of irritating vibrations. Therefore the suspension system designs are a compromise between ride softness and handing ability. However, this work is concerned with a theoretical investigation into the ride behavior of actively suspended vehicles. It is based on using fuzzy logic control (FLC) to implement a new sort of active suspension system. Comparisons between the behavior of active suspension system with FLC with those obtained from active systems with linear control theory (LQR), ideal skyhook system and the conventional passive suspension systems. Results are introduced in such a way to predict the benefits that could be achieved from fuzzy logic system over other competing systems. Furthermore, a controller is designed and made by using results of FLC system, theoretical inputs are used to examine the validity of this controller.
X