Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Diamond-Like Carbon Coating on Anti-Scuffing Characteristics of Piston Pins

2019-04-02
2019-01-0184
It has been proposed that downspeeding combined with high boost levels would effectively reduce fuel consumption in heavy-duty diesel engines. Under low-speed and high-boost operating conditions, however, the in-cylinder gas pressure, which acts on the piston crown, is greater than the piston inertia force (such that there is no force reversal), over the entire range of crank angles. Therefore, the piston pin never lifts away from the main loading area (the bottom) of the connecting rod small-end bushing where the contact pressure against the piston pin is highest. In such operating conditions, lubricant starvation is easily induced at the interface between the piston pin and small-end bushing. Through carefully devised engine tests, the authors confirmed that the piston pin scuffing phenomenon arises when the boost pressure exceeds a critical value at which the no-force reversal condition appears.
Technical Paper

A Study on Reducing Cooling loss in a Partially Insulated Piston for Diesel Engine

2018-04-03
2018-01-1276
To improve the thermal efficiency of an engine, it is particularly important to reduce the cooling loss from the combustion gas to the combustion chamber wall, which constitutes a major proportion of the total loss [1]. Previous studies addressing cooling loss reduction attempted to use ceramic in place of the conventional aluminum or iron alloys, but this led to a reduction in the volumetric efficiency and increased smoke emissions. This was caused by the ceramics having both a low thermal conductivity and high heat capacity, relative to aluminum and iron. These characteristics cause the piston wall temperature, which rises during combustion, to remain high during the intake stroke, thus increasing the intake temperature and reducing the volumetric efficiency. This increases the smoke emissions [2].
Technical Paper

Development of CNG/Diesel Dual-Compatible Engine Oil for Heavy-Duty Trucks in Thailand

2017-10-08
2017-01-2350
In Thailand, most heavy-duty trucks were equipped with diesel engine, while a small portion was equipped with compressed natural gas (CNG) engine. However, in the past few years the number of CNG fuel trucks in Thailand has increased significantly due to the cheaper cost of CNG. In general, the emphasis of heavy-duty diesel engine oil performance is on piston cleanliness and soot handling properties, while thermal and anti-oxidation properties are most critical for CNG engine oil performance. For truck fleet owners who operate both types of trucks, using the inappropriate oil that is not fit-for-purpose can adversely affect engine performance and reduce engine service lifespan under prolonged usage. A novel CNG/diesel engine oil was developed to meet both JASO DH-2 heavy-duty diesel engine oil performance and CNG engine oil performance. The candidate formulation was proved adequately fit for practical use regarding to thermal and anti-oxidation properties.
Technical Paper

A Study of Thermoacoustic Refrigerator

2017-03-28
2017-01-0158
A diesel engine is advantageous in its high thermal efficiency, however it still wastes about 50% of total input energy to exhaust and cooling losses. A feasibility study of thermoacoustic refrigerator was carried out as one of the means to recuperate waste heat. The thermoacoustic refrigerator prototyped for this study showed a capability to achieve cooling temperature lower than -20 degree C, which indicated that the system has a potential to be used in refrigerator trucks not only for cargo compartment cooling but also for cabin cooling.
Technical Paper

A Study on the Effects of a Higher Compression Ratio in the Combustion Chamber on Diesel Engine Performance

2016-04-05
2016-01-0722
In order to improve the brake thermal efficiency of the engine, such as cooling and friction losses from the theoretical thermal efficiency, it is necessary to minimize various losses. However, it is also essential to consider improvements in theoretical thermal efficiency along with the reduction of the various losses. In an effort to improve the brake thermal efficiency of heavy-duty diesel engines used in commercial vehicles, this research focused on two important factors leading to the engine's theoretical thermal efficiency: the compression ratio and the specific heat ratio. Based on the results of theoretical thermodynamic cycle analyses for the effects of the above two factors, it was predicted that raising the compression ratio from a base engine specification of 17 to 26, and increasing the specific heat ratio would lead to a significant increase in theoretical thermal efficiency.
Journal Article

A Study of Reliability Evaluation of Main Bearings for Multicylinder Diesel Engines

2016-04-05
2016-01-0494
In recent years, although experiment technologies on real engines and simulation technologies has been improved rapidly, the tribology contributing factors have not been quantitatively well evaluated to reveal critical lubrication failure mechanisms. In this study the oil film thickness of the main bearings in multicylinder diesel engines was measured, and the data was analyzed using response surface methodology, which is a statistical analysis methods used to quantitatively derive the factors affecting oil film thickness and the extent of their contribution. We found that the factor with the strongest effect on minimum oil film thickness is oil pressure. Lastly, as a verification test, bearing wear on the main bearings was compared under various oil pressure conditions. Clear differences in bearing wear were identified.
Technical Paper

Development of Fuel Economy Engine Oil for Heavy Duty Diesel Engine

2015-09-01
2015-01-2034
More stringent emissions regulations, fuel economy standards, and regulations are currently being discussed to help reduce both CO2 and exhaust emissions. Vehicle manufacturers have been developing new engine technologies, such as downsizing and down-speeding with reduced friction loss, improved engine combustion and efficiency, heat loss recycling, power-train friction loss recycling, and reduced power-train friction loss. The use of more efficient fuel economy 5W-30 engine oils for heavy duty commercial vehicles has started to expand since 2009 in Japan as one technological solution to help reduce CO2 emissions. However, fuel economy 5W-30 oils for use in heavy duty vehicles in Europe are mainly based on synthetic oils, which are much expensive than the mineral oils that are predominantly used in Japan.
Technical Paper

Effects of Alloying Elements on Wear Resistance of Automobile Cast Iron Materials

2014-04-01
2014-01-1011
Wear resistance is the important characteristics of cast iron materials for automobile components. Because the phenomenon of wear is a highly complicated mechanism involving many factors such as surface conditions, chemical reactions with lubricants, metals, and physics, it has not been fully explained. Therefore, it will be necessary to confirm and explain the wear mechanism to develop effective improvements. The purpose of this study was to investigate the structural change behavior and effects of alloying elements when the material top surface becomes worn, in order to improve the wear resistance of cylinder liners and other cast iron materials. For this purpose, several types of prototype materials were produced, and the relationship between components and wear resistance was investigated by using a laser microscope for quantitative observation of the degree of pearlite microstructure fineness.
Technical Paper

Emission Characteristics from After-Treatment System of Medium and Light Duty Engines

2014-04-01
2014-01-1501
1 To meet the Japan Post New-Long-Term (Japan 2009) emissions regulation introduced in 2009, The Hydrocarbon Selective Catalytic Reduction (HC-SCR) system for the NOx emission with a diesel fuel was chosen among various deNOx after-treatment systems (the Urea-SCR, the NOx storage-Reduction Catalyst and so on). The HC-SCR was adopted, in addition to combustion modification of diesel engine (mainly cooled EGR) as the New DPR system. The New DPR system for medium and light duty vehicles was developed as a world's first technology by Hino Motors. Advantages of the New DPR are compact to easy-to-install catalyst converter and no urea solution (DEF) injection (regardless urea infrastructure) as compared the Urea-SCR system.
Technical Paper

Mechanism of and Fuel Efficiency Improvement by Dimple Texturing on Liner Surface for Reduction of Friction between Piston Rings and Cylinder Bore

2014-04-01
2014-01-1661
Reducing friction between the piston ring and cylinder is an effective way of meeting the demand for lower fuel consumption in vehicle engines. To that effect, the authors have proposed a new and efficient friction reduction treatment for the cylinder. At first glance, this treatment seems similar to typical microtexture treatments, but it is built on a different approach. Through a rig tester, it was confirmed that optimizing the shape of the dimples and the treatment area for the cylinder improves FMEP between the piston ring and the cylinder liner by 17%. This report presents an analysis of the test results to explain the mechanism by which this effect is achieved. Fuel consumption was measured in an actual engine, and a maximum fuel consumption improvement of 3.2% was confirmed after conversion to the Japanese heavy duty vehicle fuel economy standards (Category T2). Lubricating oil consumption, blow-by and durability were also examined.
Technical Paper

A Study of the Rankine Cycle Generating System for Heavy Duty HV Trucks

2014-04-01
2014-01-0678
In heavy duty (HD) trucks cruising on expressway, about 60% of input fuel energy is wasted as losses. So it is important to recover them to improve fuel economy of them. As a waste heat recovery system, a Rankine cycle generating system was selected. And this paper mainly reports it. In this study, engine coolant was determined as main heat source, which collected energies of an engine cooling, an EGR gas and an exhaust gas, for collecting stable energy as much as possible. And the exergy of heat source was raised by increase coolant temperature to 105 deg C. As for improving the system efficiency, saturation temperature difference was expanded by improving performance of heat exchanger and by using high pressure turbine. And a recuperator which exchanges heat in working fluid between expander outlet and evaporator inlet was installed to recover the heat of working fluid at turbine generator. Then a working fluid pump was improved to reduce power consumption of the system.
Technical Paper

Investigation of Thermal Fatigue Evaluation Method for Cast Iron

2013-04-08
2013-01-0393
We have developed a new test method in which temperature of cavity lip of a piston alone during engine rotation is reproduced, cavity lip strain is measured. As the results of strain measurement using the test method in a condition that simulates of conventional engines, a strain behavior was out-of-phase. And in a condition that simulates of high-load engines in future, strain behavior was clockwise-diamond cycle. It was found from the result of the test method developed that strain increased on the cavity lip. The fatigue life of the cavity lip was evaluated using the strain measured and isothermal fatigue curves which obtained by the strain controlled isothermal fatigue test. The result of engine durability test has revealed that the developed method was valid for thermal fatigue evaluation of the cavity lip.
Technical Paper

Improvement of Low-Temperature Performance of The NOx Reduction Efficiency on the Urea-SCR Catalysts

2013-04-08
2013-01-1076
Diesel engine has a good fuel economy and high durability and used widely for power source such as heavy duty in the world. On the other hand, it is required to reduce NOx (Nitrogen Oxides) and PM (Particulate Matter) emissions further from diesel exhaust gases to preserve atmosphere. The urea-SCR (Selective Catalytic Reduction) system is the most promising measures to reduce NOx emissions. DPF (Diesel Particulate Filter) system is commercialized for PM reduction. However, in case that a vehicle has a slow speed as an urban area driving, a diesel exhaust temperature is too low to activate SCR catalyst for NOx reduction in diesel emissions. Moreover, the diesel exhaust temperature becomes lower as a future engine has less fuel consumption. The purpose of this study is reduction of NOx emission from a heavy-duty diesel engine using the Urea SCR system at the low temperature.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Technical Paper

A Study on the Mechanism of Engine Oil Consumption- Oil Upwards Transport via Piston Oil Ring Gap -

2011-04-12
2011-01-1402
Reduction of oil consumption of engines is required to avoid a negative effect on engine after treatment devices. Engines are required fuel economy for reduction of carbon-dioxide emission, and it is known that reduction of piston frictions is effective on fuel economy. However friction reduction of pistons sometimes causes an increase in engine oil consumption. Therefore reduction of engine oil consumption becomes important subject recently. The ultimate goal of this study is developing the estimation method of oil consumption, and the mechanism of oil upward transport at oil ring gap was investigated in this paper. Oil pressure under the oil ring lower rail was measured by newly developed apparatus. It was found that the piston slap motion and piston up and down motion affected oil pressure rise under the oil ring and oil was spouted through ring-gap by the pressure. The effect of the piston design on the oil pressure generation was also investigated.
Technical Paper

The Study of NOx Reduction Using Plasma-assisted SCR System for a Heavy Duty Diesel Engine

2011-04-12
2011-01-0310
To reduce NOx emissions from a heavy-duty engine at low exhaust temperature conditions, the plasma-assisted SCR (Selective Catalytic Reduction) system was evaluated. The plasma-assisted SCR system is mainly composed of an ammonia gas supply system and a plasma reactor including a pellet type SCR catalyst. The preliminary test with simulated gases of diesel exhaust showed an improvement in the NOx reduction performance by means of the plasma-assisted SCR system, even below 150°C conditions. Furthermore, NOx reduction ratio was improved up to 77% at 110°C with increase in the catalyst volume. Also NOx emissions from a heavy-duty diesel engine over the transient test mode in Japan (JE05) were reduced by the plasma-assisted SCR system. However, unregulated emissions, e.g., aldehydes, were increased with the plasma environment. This paper reports the advantages and disadvantages of the plasma-assisted SCR system for a heavy-duty diesel engine.
Journal Article

Unregulated Harmful Substances in Exhaust Gas from Diesel Engines

2009-06-15
2009-01-1870
The volatile organic compounds (VOC) from diesel engines, including formaldehyde and benzene, are concerned and remain as unregulated harmful substances. The substances are positively correlated with THC emissions, but the VOC and aldehyde compounds at light load or idling conditions are more significant than THC. When coolant temperatures are low at light loads, there are notable increases in formaldehyde and acetaldehyde, and with lower coolant temperatures the increase in aldehydes is more significant than the increase in THC. When using ultra high EGR so that the intake oxygen content decreases below 10%, formaldehyde, acetaldehyde, benzene, and 1,3-butadiene increase significantly while smokeless and ultra low Nox combustion is possible.
Journal Article

Diesel Engine Emissions and Performance Optimization for Neat GTL Fuel

2008-04-14
2008-01-1405
The emissions reduction potential of neat GTL (Gas to Liquids: Fischer-Tropsch synthetic gas-oil derived from natural gas) fuels has been preliminarily evaluated by three different latest-generation diesel engines with different displacements. In addition, differences in combustion phenomena between the GTL fuels and baseline diesel fuel have been observed by means of a single cylinder engine with optical access. From these findings, one of the engines has been modified to improve both exhaust emissions and fuel consumption simultaneously, assuming the use of neat GTL fuels. The conversion efficiency of the NOx (oxides of nitrogen) reduction catalyst has also been improved.
Technical Paper

Nano Particle Emission Evaluation of State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI) and Fuel Qualities Effects (EtOH, ETBE, FAME, Aromatics and Distillation)

2007-10-29
2007-01-4083
Newly designed laboratory measurement system, which reproduces particle number size distributions of both nuclei and accumulation mode particles in exhaust emissions, was developed. It enables continuous measurement of nano particle emissions in the size range between 5 and 1000 nm. Evaluations of particle number size distributions were conducted for diesel vehicles with a variety of emission aftertreatment devices and for gasoline vehicles with different combustion systems. For diesel vehicles, Diesel Oxidation Catalyst (DOC), urea-Selective Catalytic Reduction (urea-SCR) system and catalyzed Diesel Particulate Filter (DPF) were evaluated. For gasoline vehicles, Lean-burn Direct Injection Spark Ignition (DISI), Stoichiometric DISI and Multi Point Injection (MPI) were evaluated. Japanese latest transient test cycles were used for the evaluation: JE05 mode driving cycle for heavy duty vehicles and JC08 mode driving cycle for light duty vehicles.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
X