Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Improvement of HC-SCR Performance by Fuel Reforming Using a Low Temperature Oxidation

2021-04-06
2021-01-0591
A fuel reforming technology using a low temperature oxidation was developed to improve a NOx reduction performance of HC-SCR (Hydrocarbons Selective Catalytic Reduction) system, which does not require urea. The low-temperature oxidization of a diesel fuel in gas phase produces NOx reduction agents with high NOx reduction ability such as aldehydes and ketones. A pre-evaporation-premixing-type reformer was adopted in order to generate a uniform temperature field and a uniform fuel/air premixed gas, and to promote the low temperature oxidation efficiently. As a fundamental study, elementary reaction analysis for n-hexadecane/air premixtures was carried out to investigate the suitable reformer temperature and fuel/air equivalence ratio for generation of oxygenated hydrocarbons. It was found that the reforming efficiency was highest at the reforming temperature around 623 to 673K, and aldehydes and ketones were produced.
Technical Paper

Numerical Investigation of Near Nozzle Flash-Boiling Spray in an Axial-Hole Transparent Nozzle

2020-04-14
2020-01-0828
Understanding and prediction of flash-boiling spray behavior in gasoline direct-injection (GDI) engines remains a challenge. In this study, computational fluid dynamics (CFD) simulations using the homogeneous relaxation model (HRM) for not only internal nozzle flow but also external spray were evaluated using CONVERGE software and compared to experimental data. High-speed extinction imaging experiments were carried out in a real-size axial-hole transparent nozzle installed at the tip of machined GDI injector fueled with n-pentane under various ambient pressure conditions (Pa/Ps = 0.07 - 1.39). The width of the spray during injection was assessed by means of projected liquid volume, but the structure and timing for boil-off of liquid within the sac of the injector were also assessed after the end of injection, including cases with different designed sac volumes.
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Technical Paper

Research on a DPF Regeneration Burner System for Use when Engine is not in Operation

2019-12-19
2019-01-2237
An on board burner that enables DPF regeneration even when an engine is at standstill has been researched. By employing pre evaporative combustion with a wick burner, miniaturization of the burner system was successfully accomplished as well as stable ignition and combustion. Total heat necessary for DPF regeneration was reduced in comparison to the active DPF regeneration by means of engine control and an oxidation catalyst. Uneven temperature distribution in DPF and excessive temperature rise, which had been recognized as issues in the regeneration of a DPF while engine is at standstill, were solved by increase of combustion air amount and multi-step control of regeneration temperature and reliable regeneration was accomplished.
Technical Paper

Characteristics of Diesel Engine Oil for Heavy Duty Commercial Vehicles Achieving for both Fuel Economy and Reliability

2019-12-19
2019-01-2243
When the engine oil evaporates in the crankcase, it is necessary to discharge to the outside of the engine or returns to the intake air as part of blow-by gas. The amount of oil content in the blow-by gas is preferable to be as small as possible. This paper researched the evaporation characteristics of diesel engine oil for heavy duty into blow-by gas using 5W-30 and 10W-30 engine oils with the equivalent to Noack. As a result, it is found that evaporate phenomenon cannot be explained well enough by just Noack and clarified of the oil evaporation mechanism in blow-by gas.
Technical Paper

Effect of Diamond-Like Carbon Coating on Anti-Scuffing Characteristics of Piston Pins

2019-04-02
2019-01-0184
It has been proposed that downspeeding combined with high boost levels would effectively reduce fuel consumption in heavy-duty diesel engines. Under low-speed and high-boost operating conditions, however, the in-cylinder gas pressure, which acts on the piston crown, is greater than the piston inertia force (such that there is no force reversal), over the entire range of crank angles. Therefore, the piston pin never lifts away from the main loading area (the bottom) of the connecting rod small-end bushing where the contact pressure against the piston pin is highest. In such operating conditions, lubricant starvation is easily induced at the interface between the piston pin and small-end bushing. Through carefully devised engine tests, the authors confirmed that the piston pin scuffing phenomenon arises when the boost pressure exceeds a critical value at which the no-force reversal condition appears.
Technical Paper

A Study on Reducing Cooling loss in a Partially Insulated Piston for Diesel Engine

2018-04-03
2018-01-1276
To improve the thermal efficiency of an engine, it is particularly important to reduce the cooling loss from the combustion gas to the combustion chamber wall, which constitutes a major proportion of the total loss [1]. Previous studies addressing cooling loss reduction attempted to use ceramic in place of the conventional aluminum or iron alloys, but this led to a reduction in the volumetric efficiency and increased smoke emissions. This was caused by the ceramics having both a low thermal conductivity and high heat capacity, relative to aluminum and iron. These characteristics cause the piston wall temperature, which rises during combustion, to remain high during the intake stroke, thus increasing the intake temperature and reducing the volumetric efficiency. This increases the smoke emissions [2].
Technical Paper

Development of CNG/Diesel Dual-Compatible Engine Oil for Heavy-Duty Trucks in Thailand

2017-10-08
2017-01-2350
In Thailand, most heavy-duty trucks were equipped with diesel engine, while a small portion was equipped with compressed natural gas (CNG) engine. However, in the past few years the number of CNG fuel trucks in Thailand has increased significantly due to the cheaper cost of CNG. In general, the emphasis of heavy-duty diesel engine oil performance is on piston cleanliness and soot handling properties, while thermal and anti-oxidation properties are most critical for CNG engine oil performance. For truck fleet owners who operate both types of trucks, using the inappropriate oil that is not fit-for-purpose can adversely affect engine performance and reduce engine service lifespan under prolonged usage. A novel CNG/diesel engine oil was developed to meet both JASO DH-2 heavy-duty diesel engine oil performance and CNG engine oil performance. The candidate formulation was proved adequately fit for practical use regarding to thermal and anti-oxidation properties.
Technical Paper

Development of Next Generation Gear Oil for Heavy Duty Vehicles

2017-03-28
2017-01-0890
Heavy duty vehicles take a large role in providing global logistics. It is required to have both high durability and reduced CO2 from the viewpoint of global environment conservation. Therefore lubricating oils for transmission and axle/differential gear box are required to have excellent protection and longer drain intervals. However, it is also necessary that the gear oil maintain suitable friction performance for the synchronizers of the transmission. Even with such good performance, both transmission and axle/differential gear box lubricants must balance cost and performance, in particular in the Asian market. The development of gear oil additives for high reliability gear oil must consider the available base oils in various regions as the additive is a global product. In many cases general long drain gear oils for heavy duty vehicles use the group III or IV base oils, but it is desirable to use the group I/II base oils in terms of cost and availability.
Technical Paper

Development of Fuel Economy Engine Oil for Heavy Duty Diesel Engine

2015-09-01
2015-01-2034
More stringent emissions regulations, fuel economy standards, and regulations are currently being discussed to help reduce both CO2 and exhaust emissions. Vehicle manufacturers have been developing new engine technologies, such as downsizing and down-speeding with reduced friction loss, improved engine combustion and efficiency, heat loss recycling, power-train friction loss recycling, and reduced power-train friction loss. The use of more efficient fuel economy 5W-30 engine oils for heavy duty commercial vehicles has started to expand since 2009 in Japan as one technological solution to help reduce CO2 emissions. However, fuel economy 5W-30 oils for use in heavy duty vehicles in Europe are mainly based on synthetic oils, which are much expensive than the mineral oils that are predominantly used in Japan.
Technical Paper

Development of Road's Gradient Anticipatory Algorithm for Hybrid Heavy Duty Truck

2014-09-30
2014-01-2377
For the purpose of reducing fuel consumption, a hybrid heavy duty truck was considered. Generally, HV (Hybrid Vehicle)'s energy is regenerated from deceleration energy in urban area. Hybrid heavy duty truck's energy is regenerated from potential energy on highway. Under this circumstance, some portion of energy may not be accumulated, because capacity of HV battery is limited. In order to maximize accumulating energy in the next descent, HV battery's energy shall be adequately reduced beforehand. This can be achieved by optimizing motor assist torque considering road's altitude and gradient. In this paper, performance of the algorithm is discussed.
Technical Paper

Mechanism of and Fuel Efficiency Improvement by Dimple Texturing on Liner Surface for Reduction of Friction between Piston Rings and Cylinder Bore

2014-04-01
2014-01-1661
Reducing friction between the piston ring and cylinder is an effective way of meeting the demand for lower fuel consumption in vehicle engines. To that effect, the authors have proposed a new and efficient friction reduction treatment for the cylinder. At first glance, this treatment seems similar to typical microtexture treatments, but it is built on a different approach. Through a rig tester, it was confirmed that optimizing the shape of the dimples and the treatment area for the cylinder improves FMEP between the piston ring and the cylinder liner by 17%. This report presents an analysis of the test results to explain the mechanism by which this effect is achieved. Fuel consumption was measured in an actual engine, and a maximum fuel consumption improvement of 3.2% was confirmed after conversion to the Japanese heavy duty vehicle fuel economy standards (Category T2). Lubricating oil consumption, blow-by and durability were also examined.
Technical Paper

Emission Characteristics from After-Treatment System of Medium and Light Duty Engines

2014-04-01
2014-01-1501
1 To meet the Japan Post New-Long-Term (Japan 2009) emissions regulation introduced in 2009, The Hydrocarbon Selective Catalytic Reduction (HC-SCR) system for the NOx emission with a diesel fuel was chosen among various deNOx after-treatment systems (the Urea-SCR, the NOx storage-Reduction Catalyst and so on). The HC-SCR was adopted, in addition to combustion modification of diesel engine (mainly cooled EGR) as the New DPR system. The New DPR system for medium and light duty vehicles was developed as a world's first technology by Hino Motors. Advantages of the New DPR are compact to easy-to-install catalyst converter and no urea solution (DEF) injection (regardless urea infrastructure) as compared the Urea-SCR system.
Technical Paper

A Study of the Rankine Cycle Generating System for Heavy Duty HV Trucks

2014-04-01
2014-01-0678
In heavy duty (HD) trucks cruising on expressway, about 60% of input fuel energy is wasted as losses. So it is important to recover them to improve fuel economy of them. As a waste heat recovery system, a Rankine cycle generating system was selected. And this paper mainly reports it. In this study, engine coolant was determined as main heat source, which collected energies of an engine cooling, an EGR gas and an exhaust gas, for collecting stable energy as much as possible. And the exergy of heat source was raised by increase coolant temperature to 105 deg C. As for improving the system efficiency, saturation temperature difference was expanded by improving performance of heat exchanger and by using high pressure turbine. And a recuperator which exchanges heat in working fluid between expander outlet and evaporator inlet was installed to recover the heat of working fluid at turbine generator. Then a working fluid pump was improved to reduce power consumption of the system.
Technical Paper

Improvement of Low-Temperature Performance of The NOx Reduction Efficiency on the Urea-SCR Catalysts

2013-04-08
2013-01-1076
Diesel engine has a good fuel economy and high durability and used widely for power source such as heavy duty in the world. On the other hand, it is required to reduce NOx (Nitrogen Oxides) and PM (Particulate Matter) emissions further from diesel exhaust gases to preserve atmosphere. The urea-SCR (Selective Catalytic Reduction) system is the most promising measures to reduce NOx emissions. DPF (Diesel Particulate Filter) system is commercialized for PM reduction. However, in case that a vehicle has a slow speed as an urban area driving, a diesel exhaust temperature is too low to activate SCR catalyst for NOx reduction in diesel emissions. Moreover, the diesel exhaust temperature becomes lower as a future engine has less fuel consumption. The purpose of this study is reduction of NOx emission from a heavy-duty diesel engine using the Urea SCR system at the low temperature.
Journal Article

Effect of Fischer-Tropsch Diesel on Fuel Supply System

2011-08-30
2011-01-1950
This paper investigates the effects of Fischer-Tropsch Diesel (FTD) (a completely a paraffinic fuel) on the fuel supply system in automotive applications. In particular, the effects of Gas to Liquid (GTL) (an FTD synthesized from natural gas) on the elastomer components has been investigated by laboratory scale tests and field trials. In the field trials, GTL was supplied to a commercial vehicle operator and the effect of real running conditions was observed. Also, the laboratory scale testing to simulate the actual condition of usage of a commercial vehicle was conducted under stringent conditions, and a correlation with the field trials was investigated. As a result, no negative effects related to GTL were found.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Technical Paper

Impacts on Engine Oil Performance by the Use of Waste Cooking Oil as Diesel Fuel

2011-08-30
2011-01-2115
Technical impacts on engine oil performance by the use of waste cooking oil as bio-diesel fuel (BDF) are not well understood while the industry has made significant progress in studies on quality specifications and infrastructure. The authors, who consist of a consortium organized by Japan Lubricating Oil Society (JALOS), examined technical effects of waste cooking oil as BDF on engine oil performance such as wear and high temperature corrosion using vehicle fleets and bench tests to identify technical issues of engine oil meeting the use of BDF. The study brings fundamental information about technical impacts of BDF on engine oils.
Technical Paper

Development of New Diesel Particulate Active Reduction System for both NOx and PM Reduction

2011-04-12
2011-01-1277
The new Diesel Particulate active Reduction (DPR) system was developed for a medium-duty commercial vehicle as a deNOx catalyst combined with the conventional DPR system to achieve the Japan Post New-Long-Term (JPNLT) emissions regulations. It consists of a catalyst converter named as the new DPR cleaner, a fuel dosing injector, NOx sensors, temperatures and pressure sensors. The new DPR cleaner was constructed from a Front Diesel Oxidation Catalyst (F-DOC), a catalyzed particulate Filter (Filter), and a Rear Diesel Oxidation Catalyst (R-DOC). A newly developed Hydrocarbon Selective Catalyst Reduction (HC-SCR) catalyst was employed for each catalyst aiming to reduce NOx emissions with diesel fuel supplied from the fuel dosing injector. While the total volume of the catalyst was increased, the compact and easy-to-install catalyst converter was realized through the optimization of the flow vector and flow distribution in it by means of Computational Fluid Dynamics (CFD) analysis.
Technical Paper

A Study on the Mechanism of Engine Oil Consumption- Oil Upwards Transport via Piston Oil Ring Gap -

2011-04-12
2011-01-1402
Reduction of oil consumption of engines is required to avoid a negative effect on engine after treatment devices. Engines are required fuel economy for reduction of carbon-dioxide emission, and it is known that reduction of piston frictions is effective on fuel economy. However friction reduction of pistons sometimes causes an increase in engine oil consumption. Therefore reduction of engine oil consumption becomes important subject recently. The ultimate goal of this study is developing the estimation method of oil consumption, and the mechanism of oil upward transport at oil ring gap was investigated in this paper. Oil pressure under the oil ring lower rail was measured by newly developed apparatus. It was found that the piston slap motion and piston up and down motion affected oil pressure rise under the oil ring and oil was spouted through ring-gap by the pressure. The effect of the piston design on the oil pressure generation was also investigated.
X