Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Low Emission and Knock-Free Combustion with Rich and Lean Biform Mixture in a Dual-Fuel CI Engine with Induced LPG as the Main Fuel

2001-09-24
2001-01-3502
Smokeless and ultra low NOx combustion without knocking in a dual-fuel diesel engine with induced LPG as the main fuel was established with a uniquely developed piston cavity divided by a lip in the sidewall. A small quantity of diesel fuel was directly injected at early compression stroke into the lower part of the cavity as an ignition source for this confined area, and this suppressed explosively rapid combustion just after ignition and spark-knock like combustion at later stage. A combination of the divided cavity, EGR, and intake air throttling was effective to simultaneously eliminate knocking, and reduce THC and NOx significantly.
Technical Paper

Ultra Low Emissions and High Performance Diesel Combustion with a Combination of High EGR, Three-Way Catalyst, and a Highly Oxygenated Fuel, Dimethoxy Methane (DMM)

2000-06-19
2000-01-1819
Ultra low emissions and high performance combustion was achieved with a combination of high EGR, a three-way catalyst, and a highly oxygenated liquid fuel, neat dimethoxy methane (DMM), in an ordinary DI diesel engine. The smokeless nature of neat DMM effectively allowed stoichiometric diesel combustion by controlling BMEP with EGR. NOx, THC, and CO emissions were reduced with a three-way catalyst. At lower BMEP with excess air, the EGR effectively reduced NOx. High-speed video in a bottom view type engine revealed that luminous flame decreased with increased fuel oxygen content and almost disappeared with DMM.
Technical Paper

Ultra Low Emission and High Performance Diesel Combustion with Highly Oxygenated Fuel

2000-03-06
2000-01-0231
Significant improvements in exhaust emissions and engine performance in an ordinary DI diesel engine were realized with highly oxygenated fuels. The smoke emissions decreased sharply and linearly with increases in oxygen content and entirely disappeared at an oxygen content of 38 wt-% even at stoichiometric conditions. The NOx, THC, and CO were almost all removed with a three-way catalyst under stoichiometric diesel combustion at both the higher and lower BMEP with the combination of EGR and a three-way catalyst. The engine output for the highly oxygenated fuels was significantly higher than that with the conventional diesel fuel due to the higher air utilization.
Technical Paper

Cycle-to-cycle Transient Characteristics of Diesel Emissions during Starting

1999-10-25
1999-01-3495
Changes in exhaust gas emissions during starting in a DI diesel engine were investigated. The THC after starting increased until around the 50th cycle when the fuel deposited on the combustion chamber showed the maximum, and THC then decreased to reach a steady value after about 1000 cycles when the piston wall temperature became constant. The NOx showed an initial higher peak just after starting, and increased to a steady value after about 1000 cycles. Exhaust odor had a strong correlation with THC, and at the early stage odor was stronger than would be expected from the THC concentration. The THC increased with increased fuel injection amounts, decreased cranking speeds, and fuels with higher viscosity, higher 90% distillation temperature, and lower ignitability.
Technical Paper

Significant NOx Reductions with Direct Water Injection into the Sub-Chamber of an IDI Diesel Engine

1995-02-01
950609
The effect of direct water injection into the combustion chamber on NOx reduction in an IDI diesel engine was investigated. The temperature distribution in the swirl chamber was analyzed quantitatively with high speed photography and the two color method. Direct water injection into a swirl chamber prior to fuel injection reduced NOx emission significantly over a wide output range without sacrifice of BSFC. Other emissions were almost unchanged or slightly decreased with water injection. Water injection reduced the flame temperature at the center of the swirl chamber, while the mean gas temperature in the cylinder and the rate of heat release changed little.
Technical Paper

Combustion and Emissions in a New Concept DI Stratified Charge Engine with Two-Stage Fuel Injection

1994-03-01
940675
A new concept DISC engine equipped with a two-stage injection system was developed. The engine was modified from a single cylinder DI diesel engine with large cylinder diameter (135mm). Combustion characteristics and exhaust emissions with regular gasoline were examined, and the experiments were also made with gasoline-diesel fuel blends with higher boiling temperatures and lower octane numbers. To realize stratified mixture distribution in combustion chamber flexibly, the fuel was injected in two-stages: the first stage was before the compression stroke to create a uniform premixed lean mixture and the second stage was at the end of the compression stroke to maintain stable ignition and faster combustion. In this paper, the effect of the two-stage injection on combustion and exhaust emissions were analyzed under several operating conditions.
Technical Paper

Time Series Analysis of Diesel Exhaust Gas Emissions Under Transient Operation

1993-03-01
930976
Time series analysis of diesel exhaust gas emissions under transient operation was carried out using a uniquely developed gas sampling system to efficiently collect all exhaust gas throughout transient cycles. The effects of fuel properties and other engine operation parameters on the exhaust emissions under transient runs when fuel amounts abruptly increase were analyzed. The results showed that THC increased abruptly to 2 or 6 times the final steady-state concentration immediately after the start of acceleration and then decreased to the steady-state values after 70∼200 cycles. At acceleration, NOx increased abruptly to about 80 % of the final NOx concentration, and then increased gradually to reach the final values after 60∼500 cycles. The behaviors of THC and NOx during transient operation can be described by exponential functions of the elapsed cycle numbers and the final emission concentrations.
Technical Paper

Characteristics of Diesel Soot Suppression with Soluble Fuel Additives

1987-09-01
871612
Experiments on a large number of soluble fuel additives were systematically conducted for diesel soot reduction. It was found that Ca and Ba were the most effective soot suppressors. The main determinants of soot reduction were: the metal mol-content of the fuel, the excess air factor, and the gas turbulence in the combustion chamber. The soot reduction ratio was expressed by an exponential function of the metal mol-content in the fuel, depending on the metal but independent of the metal compound. A rise in excess air factor or gas turbulence increased the value of a coefficient in the function, resulting in larger reductions in soot with the fuel additives. High-speed soot sampling from the cylinder showed that with the metal additive, the soot concentration in the combustion chamber was substantially reduced during the whole period of combustion. It is thought that the additive acts as a catalyst not only to improve soot oxidation but also to suppress soot formation.
Technical Paper

Effects of Super Heating of Heavy Fuels on Combustion and Performance in DI Diesel Engines

1986-02-01
860306
This paper is concerned with the effects of temperature of heavy fuels on combustion and engine performance in a naturally aspirated DI diesel engine. Engine performance and exhaust gas emissions were measured for rapeseed oil, B-heavy oil, and diesel fuel at fuel temperatures from 40°C to 400°C. With increased fuel temperature, mainly from improved efficiency of combustion there were significant reductions in the specific energy consumption and smoke emissions. It was found that the improvements were mainly a function of the fuel viscosity, and it was independent of the kind of fuel. The optimum temperature of the fuels with regard to specific energy consumption and smoke emission is about 90°C for diesel fuel, 240°C for B-heavy oil, and 300°C for rapeseed oil. At these temperatures, the viscosities of the fuels show nearly identical value, 0.9 - 3 cst. The optimum viscosity tends to increase slightly with increases in the swirl ratio in the combustion chamber.
X