Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Development of a Micro-Reactor HC-SCR System and the Evaluation of NOx Reduction Characteristics

To reduce NOx emissions from diesel engines, the urea-SCR (selective catalytic reduction) system has been introduced commercially. In urea-SCR, the freezing point of the urea aqueous solution, the deoxidizer, is −11°C, and the handling of the deoxidizer under cold weather conditions is a problem. Further, the ammonia escape from the catalyst and the generation of N2O emissions are also problems. To overcome these disadvantages of the urea-SCR system, the addition of a hydrocarbon deoxidizer has attracted attention. In this paper, a micro-reactor SCR system was developed and attached to the exhaust pipe of a single cylinder diesel engine. With the micro-reactor, the catalyst temperature, quantity of deoxidizer, and the space velocity can be controlled, and it is possible to use it with gas and liquid phase deoxidizers. The catalyst used in the tests reported here is Ag(1wt%)-γAl2O3.
Technical Paper

Improvement of Combustion and Emissions in a Dual Fuel Compression Ignition Engine with Natural Gas as the Main Fuel

Dual fuel combustion with premixed natural gas as the main fuel and diesel fuel as the ignition source was investigated in a 0.83 L, single cylinder, DI diesel engine. At low loads, increasing the equivalence ratio of natural gas to around 0.5 with intake throttling makes it possible to reduce the THC and CO emissions as well as to improve the thermal efficiency. At high loads, increasing the boost pressure moderates the combustion, but increases the THC and CO emissions, resulting in deterioration of the thermal efficiency. The EGR is essential to suppress the rapid combustion. As misfiring occurs with a compression ratio of 14.5 and there is excessively rapid combustion with 18.5 compression ratio, 16.5 is a suitable compression ratio.
Technical Paper

Dual Fuel Diesel Combustion with Premixed Ethanol as the Main Fuel

Dual fuel combustion with premixed ethanol as the main fuel and direct injection of diesel fuel as an ignition source poses problems including large unburned emissions and excessively rapid combustion. In this report the influence of compression ratios, injection timings of diesel fuel, and intake oxygen concentrations was systematically investigated in a modern diesel engine. The combustion process was classified into three stages: the first rapid combustion of diesel fuel and the ethanol mixture entrained into the diesel fuel spray; the second mild combustion with flame propagation of the ethanol mixture; and the third rapid combustion with auto-ignition of the unburned ethanol mixture without knocking. The third stage combustion occurs occasionally at several operating conditions and has been termed as PREMIER (premixed mixture ignition in the end-gas region) combustion.
Technical Paper

HCCI Combustion Control by DME-Ethanol Binary Fuel and EGR

The HCCI engine offers the potential of low NOx emissions combined with diesel engine like high efficiency, however HCCI operation is restricted to low engine speeds and torques constrained by narrow noise (HCCI knocking) and misfiring limits. Gasoline like fuel vaporizes and mixes with air, but the mixture may auto-ignite at the same time, leading to heavy HCCI knocking. Retarding the CA50 (the crank angle of the 50% burn) is well known as a method to slow the maximum pressure rise rate and reduce HCCI knocking. The CA50 can be controlled by the fuel composition, for example, di-methyl ether (DME), which is easily synthesized from natural gas, has strong low temperature heat release (LTHR) characteristics and ethanol generates strong LTHR inhibitor effects. The utilization of DME-ethanol binary blended fuels has the potential to broaden the HCCI engine load-speed range.
Technical Paper

Combustion Characteristics of Emulsified Blends of Aqueous Ethanol and Diesel Fuel in a Diesel Engine with High Rates of EGR and Split Fuel Injections

Silent, clean, and efficient combustion was realized with emulsified blends of aqueous ethanol and diesel fuel in a DI diesel with pilot injection and cooled EGR. The pilot injection sufficiently suppressed the rapid combustion to acceptable levels. The thermal efficiency with the emulsified fuel improved as the heat release with the pilot injection was retarded to near top dead center, due to poor ignitability and also due to a reduction in afterburning. With the emulsified fuel containing 40 vol% ethanol and 10 vol% water (E40W10), the smokeless operation range can be considerably extended even under low fuel injection pressure or low intake oxygen content conditions.
Journal Article

Improvement in DME-HCCI Combustion with Ethanol as a Low-Temperature Oxidation Inhibitor

Port injection of ethanol addition as an ignition inhibitor was implemented to control ignition timing and expand the operating range in DME fueled HCCI combustion. The ethanol reduced the rate of low-temperature oxidation and consequently delayed the onset of the high-temperature reaction with ultra-low NOx over a wide operating range. Along with the ethanol addition, changes in intake temperature, overall equivalence ratio, and engine speed are investigated and shown to be effective in HCCI combustion control and to enable an extension of operation range. A chemical reaction analysis was performed to elucidate details of the ignition inhibition on low-temperature oxidation of DME-HCCI combustion.
Technical Paper

Improvements to Premixed Diesel Combustion with Ignition Inhibitor Effects of Premixed Ethanol by Intake Port Injection

Premixed diesel combustion modes including low temperature combustion and MK combustion are expected to realize smokeless and low NOx emissions. As ignition must be delayed until after the end of fuel injection to establish these combustion modes, methods for active ignition control are being actively pursued. It is reported that alcohols including methanol and ethanol strongly inhibit low temperature oxidation in HCCI combustion offering the possibility to control ignition with alcohol induction. In this research improvement of diesel combustion and emissions by ethanol intake port injection for the promotion of premixing of the in-cylinder injected diesel fuel, and by increased EGR for the reduction of combustion temperature.
Technical Paper

Ultra Low Emissions and High Performance Diesel Combustion with a Combination of High EGR, Three-Way Catalyst, and a Highly Oxygenated Fuel, Dimethoxy Methane (DMM)

Ultra low emissions and high performance combustion was achieved with a combination of high EGR, a three-way catalyst, and a highly oxygenated liquid fuel, neat dimethoxy methane (DMM), in an ordinary DI diesel engine. The smokeless nature of neat DMM effectively allowed stoichiometric diesel combustion by controlling BMEP with EGR. NOx, THC, and CO emissions were reduced with a three-way catalyst. At lower BMEP with excess air, the EGR effectively reduced NOx. High-speed video in a bottom view type engine revealed that luminous flame decreased with increased fuel oxygen content and almost disappeared with DMM.
Technical Paper

Performance of NOX Catalyst in a DI Diesel Engine Operated with Neat Dimethyl Ether

An experiment was conducted with a direct injection Diesel engine operated with neat dimethyl ether (DME). Main focus of this research is to investigate the performance of the catalysts designed for NOx reduction, such as Co–alumina and Sn–alumina catalysts, for the reduction of NOX and other unburned species contained in the exhaust gas. In the experiments, DME concentration in the exhaust gas was changed by adding extra DME before the catalytic reactor, which is the important experimental parameter in the research. Results showed that NOX reduction rate was not so high without any DME addition, because the content of unburned DME, reducing agent, is very low in the DME engine exhaust gas. However, NOX reduction rate increased with increase in DME content and it reached around 80% with enough DME addition. The NOX reduction rate increased with increase in reaction temperature up to around 300 °C.
Technical Paper

Improvement of Performance and Emissions of a Compression Ignition Methanol Engine with Dimethyl Ether

Dimethyl ether (DME) has very good compression ignition characteristics, and can be converted from methanol using a γ - alumina catalyst. A previous report investigated a compression ignition methanol engine with DME as an ignition improver. The results showed that the engine operation was sufficiently smooth without either spark or glow plugs. Two methods were studied, one was an aspiration method, and the other was a torch ignition chamber method (TIC method). The aspiration method allows a simple engine structure, but suffers from poor engine emissions and requires large amounts of DME. With the TIC method where the DME was introduced into a torch ignition chamber (TIC) during the intake stroke, the diffusion of the DME into the main combustion chamber was limited, and significant reductions in both the necessary quantity of DME and emissions were obtained [1][2].
Technical Paper

A Study of a Compression Ignition Methanol Engine with Converted Dimethyl Ether as an Ignition Improver

Dimethyl ether (DME) can be converted easily from methanol in a catalytic reactor, and it has very good compression ignition characteristics. This paper presents experimental results on a compression ignition methanol engine with DME as an ignition improver. The results show that engine operation is sufficiently smooth with high efficiency without spark or glow plugs. In the experiments, two methods for DME introduction were investigated: an aspiration and a torch ignition method. The aspiration method introduces DME into the intake manifold, and is structurally simple but suffers from poor emission characteristics at partial loads, and a large amount of DME is required for ignition. With the torch ignition method, DME is introduced into a torch ignition chamber during the intake stroke, and significant reductions in both the necessary DME quantity and emissions were obtained. Engine operation was also attempted with DME-dissolved methanol fuel without ignition aids.
Technical Paper

Low Carbon Flower Buildup, Low Smoke, and Efficient Diesel Operation with Vegetable Oils by Conversion to Mono-Esters and Blending with Diesel Oil or Alcohols

The purpose of this investigation is to evaluate the feasibility of rapeseed oil and palm oil for diesel fuel substitution in a naturally aspirated D.I. diesel engine, and also to find means to reduce the carbon deposit buildup in vegetable oil combustion. In the experiments, the engine performance, exhaust gas emissions, and carbon deposits were measured for a number of fuels: rapeseed oil, palm oil, methylester of rapeseed oil, and these fuels blended with ethanol or diesel fuel with different fuel temperatures. It was found that both of the vegetable oil fuels generated an acceptable engine performance and exhaust gas emission levels for short term operation, but they caused carbon deposit buildups and sticking of piston rings after extended operation.