Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Technical Paper

Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems

2010-04-12
2010-01-1292
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. In the impact on exhaust emissions, the impact of high biodiesel blends into diesel fuel on diesel emissions was evaluated. The wide variety of biodiesel blendstock, which included not only some kinds of fatty acid methyl esters(FAME) but also hydrofined biodiesel(HBD) and Fischer-Tropsch diesel fuel(FTD), were selected to evaluate. The main blend level evaluated was 5, 10 and 20% and the higher blend level over 20% was also evaluated in some tests. The main advanced technologies for exhaust aftertreatment systems were diesel particulate filter(DPF), Urea selective catalytic reduction (Urea-SCR) and the combination of DPF and NOx storage reduction catalyst(NSR).
Technical Paper

Distinguishing the Effects of Aromatic Content and Ignitability of Fuels in Diesel Combustion and Emissions

1991-10-01
912355
The influence of aromatic content in fuels on the soot and NOx emissions from a diesel engine was analyzed under controlled ignition lags with spark-assisted operation. Monocyclic aromatic hydrocarbons and n-hexane mixtures were used as fuels, and the aromatic content was varied from 0 to 75 v-%. The experiments showed that, at the same equivalence ratio and regardless of the molecular structure of the fuel, the soot concentration in the exhaust gas could be described by a linear-combination function with two variables representing the ignition lag and C/H atom-ratio of the fuels. For unchanged ignition lags, the soot emissions increased linearly with increased C/H atom-ratios, which are controlled by the aromatic content. The degree of increase in soot emissions with increasing C/H atom-ratio decreased with decreasing equivalence ratios. The NOx emission increased slightly with increases in the C/H atom-ratio and ignition lag.
X