Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development of Diesel Combustion for Commercial Vehicles

1997-08-06
972685
Historically the high speed diesel engine for commercial vehicles has been developed along with its combustion system in compliance with political and economical changes. After the 1970's, stricter exhaust emission regulations and fuel economy requirements induced combustion developments and application of turbocharged and inter cooled engines. From the late 1980's, high pressure fuel injection has been investigated and recognized as an essential tool for lowering emissions especially of particulate matter. Although turbulence effects on both in-cylinder air motion and during the combustion process are quite effective, they show different phenomena in conventional and advanced high pressure fuel injection systems. In the 1990's, multiple injection with high pressure has been attempted for further reduction of NOx and particulate matter.
Technical Paper

A New Concept for Low Emission Diesel Combustion

1997-02-24
970891
A new concept for diesel combustion was investigated by means of numerical simulation, engine experiment, and combustion observation in order to realize a simultaneous reduction of NOx and particulate emission. This concept (HiMICS: Homogeneous charge intelligent Multiple Injection Combustion System) is based on pre-mixed compression ignition combustion combined with multiple injection. Combustion characteristics of HiMICS concept was investigated by comparing with both a standard single injection and a pilot injection. In HiMICS concept, the pre-mixture is formed by a preliminary injection performed during a period from the early stage of the induction stroke to the middle stage of the compression stroke. Modified KIVA-II code was used to predict engine performances and emissions of each injection method. The simulation results show a capability of considerable improvement in the trade-off relation between NOx emissions and fuel consumption of HiMICS.
Technical Paper

Low Emission Combustion influences Durability of Fuel Injection Pipe Line and Treatment of the Pipe

1987-09-01
871614
In order to reduce particulate and NOx emission from the direct injection diesel engine, most researchers have been expecting the utilization of higher injection pressure and injection rate for improvement of diesel combustion. In the case of pump-line-nozzle system, the injection pipe line is very important with regard to the high injection pressure. Namely, the pipe line must be able to resist not only high pressure but also cavitation erosion. In this paper, the effect of high injection pressure, injection rate and sharp cutting at the end of fuel injection are discussed along with cavitation phenomena on the injection pipe line. And durability tests on the pipe line system under high injection pressure using a test rig are also described. Regarding durability tests, several measures have been taken for the injection pipe. As a result, the authors have found that the best solution for the injection pipe is a composite pipe made with SUS and steel.
Technical Paper

An Observation of Combustion Phenomenon on Heat Insulated Turbo-Charged and Inter-Cooled D.I. Diesel Engines

1986-09-01
861187
A current unmodified and modified engines with different amounts of thermal insulation have been used to generate data from which changes in bsfc, cooling loss, emissions, exhaust loss were determined. Since legislative requirement exists for allowable emission of NOx, fuel injection timing and other controllable factors were adjusted to maintain constant NOx emission except a test of influence on NOx emission according to the rate of heat insulation (adiabaticity). The effect of higher combustion temperature on the combustion phenomena is discussed.
X