Refine Your Search

Topic

Author

Search Results

Technical Paper

Prediction Method of Snow Ingress Amount into the Engine Air Intake Duct Employing LES and Detailed Snow Accumulation Model

2019-04-02
2019-01-0805
When a vehicle is driven in snowy conditions, if a proper air intake design is not adopted, the snow lifted by the leading vehicles may penetrate into the engine air intake, in case of large snow ingress amount, causing a power drop. The evaluation of such risk for the intake is carried out through climatic wind tunnel tests, which cannot be conducted at the early stage of vehicle development when the prototype vehicle does not exist. In order to study that risk prior to the prototype vehicle delivery, computational fluid dynamics (CFD) which predicts the snow ingress amount accurately was established with taking into account unsteady air flow and snow accumulation. Large Eddy Simulation (LES) was used to reproduce the unsteady flow field, leading to a good agreement of the flow downstream from the snow generator with the experimental one measured by Particle Image Velocimetry (PIV). As for the snow particle behavior model, the Lagrangian method was chosen.
Journal Article

Prediction Method for Water Intrusion into the Engine Air Intake Duct while Running on Flooded Road at the Early Stage of Vehicle Development

2017-03-28
2017-01-1322
Vehicles are required durability in various environments all over the world. Especially water resistance on flooded roads is one of the important issues. To solve this kind of problem, a CFD technology was established in order to predict the water resistance performance of the vehicle at the early development stage. By comparison with vehicle tests on flooded roads, it is clarified the following key factors are required for accurate prediction; the vehicle velocity change, the vehicle height change and the air intake flow rate. Moreover, these three key factors should be appropriately determined from vehicle and engine specification to predict water intrusion for flooded roads at the early stage of development. In this paper, a methodology which determines appropriate analysis conditions mentioned above for flooding simulation from vehicle and engine specification is described. The methodology enables us to determine whether the vehicle provides sufficient waterproofness.
Technical Paper

1-D Simulation Model Developed for a General Purpose Engine

2016-11-08
2016-32-0030
In recent years, improvements in the fuel economy and exhaust emission performance of internal combustion engines have been increasingly required by regulatory agencies. One of the salient concerns regarding general purpose engines is the larger amount of CO emissions with which they are associated, compared with CO emissions from automobile engines. To reduce CO and other exhaust emissions while maintaining high fuel efficiency, the optimization of total engine system, including various design parameters, is essential. In the engine system optimization process, cycle simulation using 0-D and 1-D engine models are highly useful. To define an optimum design, the model used for the cycle simulation must be capable of predicting the effects of various parameters on the engine performance. In this study, a model for predicting the performance of a general purpose SI (Spark Ignited) engine is developed based on the commercially available engine simulation software, GT-POWER.
Journal Article

Development of a New Pressure Measurement Technique and PIV to Validate CFD for the Aerodynamics of Full-scale Vehicles

2016-04-05
2016-01-1623
In the early stages of aerodynamic development of commercial vehicles, the aerodynamic concept is balanced with the design concept using CFD. Since this development determines the aerodynamic potential of the vehicle, CFD with high accuracy is needed. To improve its accuracy, spatial resolution of CFD should be based on flow phenomenon. For this purpose, to compare aerodynamic force, pressure profile and velocity vector map derived from CFD with experimental data is important, but there are some difficulties to obtain pressure profile and velocity vector map for actual vehicles. At the point of pressure measurement for vehicles, installation of pressure taps to the surface of vehicle, i.e., fuel tank and battery, is a problem. A new measurement method developed in this study enables measurement of surface pressure of any desired points. Also, the flexibility of its shape and measuring point makes the installation a lot easier than the conventional pressure measurement method.
Technical Paper

Aerodynamic Performance Evaluation System at the Early Concept Stage of Automotive Styling Development Based on CFD

2016-04-05
2016-01-1584
An aerodynamic styling evaluation system employed at an early automotive development stage was constructed. The system based on CFD consists of exterior model morphing, computational mesh generation, flow calculation and result analysis, and the process is automatically and successively executed by process automation software. Response surfaces and a parallel coordinates chart output by the system allow users to find a well-balanced exterior form, in terms of aerodynamics and exterior styling, in a wide design space which are often arduous to be obtained by a conventional CAE manner and scale model wind tunnel testing. The system was designed so that 5-parameter study is completed within approximately two days, and consequently, has been widely applied to actual exterior styling development. An application for a hatchback vehicle is also introduced as an actual example.
Journal Article

The Predictive Simulation of Exhaust Pipe Narrow-band Noise

2015-04-14
2015-01-1329
A method of predictive simulation of flow-induced noise using computational fluid dynamics has been developed. The goal for the developed method was application in the vehicle development process, and the target of the research was therefore set as balancing the realization of a practical level of predictive accuracy and a practical computation time. In order to simulate flow-induced noise, it is necessary to compute detailed eddy flows and changes in the density of the air. In the research discussed in this paper, the occurrence or non-occurrence of flow-induced noise was predicted by conducting unsteady compressible flow calculation using large eddy simulation, a type of turbulence model. The target flow-induced noise for prediction was narrow-band noise, a type of noise in which sound increases in specific frequency ranges.
Journal Article

Full Vehicle Thermal Prediction by Identification Approach from Test Results

2015-04-14
2015-01-0441
With demands for enhanced environmental performance such as fuel economy, the tendency has been to reduce the amount of wind introduced to the engine room to reduce drag. Meanwhile, exhaust gas temperatures are increasing in order to reduce emissions concentrations. As a result, the temperature environments for parts inside the engine room and underfloor parts are becoming harsher, and accurately understanding the temperature environments of parts is crucial in determining Engine room component layout during vehicle development and applying effective thermal countermeasures. Computational fluid dynamics (CFD) are effective for understanding complex phenomena such as heat generation and cooling. However, this paper reports the development of a method for accurately calculating the vehicle temperature distribution through identification from test results.
Technical Paper

Flow Field Analysis in the Development of the 2013 Model Year Accord Hybrid

2015-04-14
2015-01-1534
There is a need to reduce vehicle's running resistance through aerodynamic performance in terms of having less negative impact on the global environment. In the Accord full model change, the package design is changed, so it is an opportunity to propose methods for improving aerodynamic performance. During the preliminary study, phenomenon analyses were conducted to identify areas that have a significant effect on aerodynamics by using a 25% scale model of the previous model. Based on more than 500 variation measurements as parameter study, the analysis was conducted using computational fluid dynamics (CFD). A proposal was made to the package design. For development that began with the fundamental frame proposed in preliminary studies, wind tunnel testing using 25% scale model was conducted jointly with the Styling Design Office to achieve enhancement styling while also increasing aerodynamic performance.
Technical Paper

Aerodynamic Development of the New Honda FIT/JAZZ

2015-04-14
2015-01-1535
This paper discusses the characteristic flow field of the new Honda FIT/Jazz as determined from the aerodynamic development process, and introduces the technique that reduced aerodynamic drag in a full model change. The new FIT was the first model to take full advantage of the Flow Analysis Simulation tool (FAST), our in-house CFD system, in its development. The FAST system performs aerodynamic simulation by automatically linking the exterior surface design with a predefined platform layout. This allows engineers to run calculations efficiently, and the results can be shared among vehicle stylists and aerodynamicists. Optimization of the exterior design gives the new FIT a moderate pressure peak at the front bumper corner as compared to the previous model, resulting in a smaller pressure difference between the side and underbody.
Journal Article

Development of Temperature Estimation Method of Whole Engine Considering Heat Balance under Vehicle Running Conditions

2014-11-11
2014-32-0050
For detailed temperature estimates in the engine of a running motorcycle, newly researches were conducted on the method for calculation of temperature distribution using a three-dimensional (3D) thermal conductivity simulation after calculating the total balance of heat generation and heat dissipation of the engine using a one-dimensional (1D) thermal simulation. This project is targeted at air-cooled engines in which the cooling conditions vary significantly depending on the external shapes of the engines and the airflow around them. The heat balance is calculated using the 1D thermal simulation taking into account all the routes and processes for dissipation to the atmosphere of the heat that is generated by the combustion in the engine. The 1D engine cycle simulation is applied to calculate the heat transmission to the engine from the combustion. For the calculation of heat transfer within the engine, the engine components are converted to a one-dimensional model.
Technical Paper

CFD Analysis of Lubricant Fluid Flow in Automotive Transmission

2014-04-01
2014-01-1772
An analytic technology able to rapidly and accurately predict oil flows and churning torque in a transmission has been developed. The new method uses the finite difference method for analysis; with regard to wall boundaries it reproduces the shapes of physical objects by imparting boundary information to cells. This has made it a simple matter to treat the rotation and meshing of the gears, which form oil flows, and has also reduced the calculation cost. Tests of single-phase and multi-phase flows and churning torque were conducted in order to verify the accuracy of the new method. Calculation results for the flow velocity fields produced by rotating bodies, the trajectory of oil, and the behavior of the surface of the fluid displayed a good correlation with test results. Considering air entrainment in the oil, the ability of the method to reproduce these phenomena at high speeds of rotation was also increased.
Technical Paper

Effect of Unsteady Lift Force on Vehicle Dynamics in Heave and Pitch Motion

2014-04-01
2014-01-0576
The change in the aerodynamic lift force (henceforth CL) by heave motion is discussed in this paper in order to clarify the effect of aerodynamic characteristics on the vehicle dynamic performance. We considered that phenomenon in actual car running at 160km/h and 1Hz heave frequency. Using a towing tank to change its water from the air to the working fluid to more easily observe this phenomenon. That makes possible to observe the same phenomenon with reduced velocity and small models under same Strouhal number condition. This method can be reducing vehicle speed to 3m/s (1/15 actual) and frequency to 0.2Hz (1/5 actual) in case using 40% scaled model. The results of these tests showed that unsteady CL is proportional to heave motion. These results showed the proportional relationship between unsteady CL and heave motion. The formularization of unsteady CL made it possible to introduce shape coefficients to vehicle dynamics simulations as functions of heave velocity.
Technical Paper

Fuel Consumption and Power Performance Prediction in Outboard Motors for High-Speed Planing Boats using CFD Simulation

2012-10-23
2012-32-0099
Predicting fuel consumption and performance of an outboard motor for a high speed small planing boat are numerically challenging. The propeller is one of the most popular propulsion systems used for outboard motors. We focused our attention on the fact that the thrust performance of a propeller has a major impact on cruising fuel consumption and performance. We believe that we can numerically predict cruising fuel consumption, which has conventionally been estimated through experiential means, using accurate thrust performance measurements via CFD simulation without cavitations model. This study aims to develop a simulator that could quantitatively predict cruising fuel consumption and performance of an outboard motor used for a high speed small planing boat. After comparing the CFD simulation of propellers against the results of model tests, the simulated results are in good agreement with the experimental results.
Journal Article

Quantitative Representations of Aerodynamic Effects on Handling Response and Flat Ride of Vehicles

2012-04-16
2012-01-0445
The effects of aerodynamic coefficients on handling response and flat ride were quantified. For handling response, the aerodynamic effect was quantified by analysis with linear representation and a two-wheel simulation model, using aerodynamic coefficients obtained from a full scale car wind tunnel. The correlation of aerodynamic coefficients and handling response with driving feel was also ascertained. Aerodynamic yaw moment and side-force were also converted to equivalent front and rear lift to standardize aerodynamic indexes and improve aerodynamic development efficiency. For flat ride, steady and unsteady aerodynamic effects were quantified by analysis with a two-degree-of-freedom mass-spring-damper simulation model and aerodynamic coefficients obtained from a 35% scale model wind tunnel and towing tank test. Unsteady aerodynamic force occurrence mechanism was ascertained by unsteady CFD using dynamic mesh.
Technical Paper

3D-PIV Measurement and Visualization of Streamlines Around a Standard SAE Vehicle Model

2011-04-12
2011-01-0161
In CFD (Computational Fluid Dynamics) verification of vehicle aerodynamics, detailed velocity measurements are required. The conventional 2D-PIV (Two Dimensional Particle Image Velocimetry) needs at least twice the number of operations to measure the three components of velocity ( u,v,w ), thus it is difficult to set up precise measurement positions. Furthermore, there are some areas where measurements are rendered impossible due to the relative position of the object and the optical system. That is why the acquisition of detailed velocity data around a vehicle has not yet been attained. In this study, a detailed velocity measurement was conducted using a 3D-PIV measurement system. The measurement target was a quarter scale SAE standard vehicle model. The wind tunnel system which was also designed for a quarter scale car model was utilized. It consisted of a moving belt and a boundary suction system.
Technical Paper

Establishment of Engine Lubrication Oil Pressure and Flow Rate Distribution Prediction Technology Using 3D-CFD and Multi Body Dynamics

2009-04-20
2009-01-1349
To develop ideal oil circuits, it was necessary to establish technology that would accurately predict lubrication oil pressure and flow rates. Therefore, the oil flow rate was predicted by applying load fluctuations, calculated using multi body dynamics, to an oil film model. In addition, the pressure loss of complex oil passages was obtained using 3-dimensional computational fluid dynamics (hereafter, “3D-CFD”). Furthermore, the pressure loss of the oil pressure switching valves and other parts that are difficult to predict using 3D-CFD were measured as single parts, and these results were linked with one-dimensional internal flow analysis to develop a prediction method for lubrication oil pressure and flow rate distributions. Verification tests were ultimately performed using a completed engine, and the results confirmed that this simulation method accurately reproduces the oil pressure and oil flow rate in each part.
Technical Paper

Design and CFD Analysis of an NHRA Funny Car Body

2008-12-02
2008-01-3003
This paper describes the methodology used to design and perform a CFD analysis of a Chevrolet Impala SS Funny Car body. This body was designed for the purpose of making it available for teams to race it in the National Hot Rod Association (NHRA) drag racing series beginning with the 2007 race season. Several challenges were presented in this project: (1) This was the first time a General Motors drag racing body for use in professional classes (Funny Car or otherwise) was ever designed in CAD. (2) The body was originally designed as a 2007 Chevrolet Monte Carlo. After the tooling was completed, changes in Chevrolet’s product lineup required that the body be changed to a 2007 Impala SS. (3) Budget constraints precluded CFD analysis until after the bodies were already being manufactured. There were several teams that raced the new body during the 2007 race season. One of these teams won the Funny Car Driver’s Championship.
Journal Article

Investigation of Spray Evaporation and Numerical Model Applied for Fuel-injection Small Engines

2008-09-09
2008-32-0064
The purpose of this research is to develop a prediction technique that can be used in the development of port fuel-injection (hereinafter called PFI) gasoline engines, especially for general purpose small utility engines. Utility engines have two contradictory desirable aspects: compactness and high-power at wide open throttle. Therefore, applying the port fuel injector to utility engines presents a unique intractableness that is different from application to automobiles or motorcycles. At the condition of wide open throttle, a large amount of fuel is required to output high power, and injected fuel is deposited as a wall film on the intake port wall. Despite the fuel rich condition, emissions are required to be kept under a certain level. Thus, it is significant to understand the wall film phenomenon and control film thickness in the intake ports.
Journal Article

Development of the Combustion System for General Motors' 3.6L DOHC 4V V6 Engine with Direct Injection

2008-04-14
2008-01-0132
General Motors' 3.6L DOHC 4V V6 engine has been upgraded to provide substantial improvements in performance, fuel economy, and emissions for the 2008 model year Cadillac CTS and STS. The fundamental change was a switch from traditional manifold-port fuel injection (MPFI) to spark ignition direct injection (SIDI). Additional modifications include enhanced cylinder head and intake manifold air flow capacities, optimized camshaft profiles, and increased compression ratio. The SIDI fuel system presented the greatest opportunities for system development and optimization in order to maximize improvements in performance, fuel economy, and emissions. In particular, the injector flow rate, orifice geometry, and spray pattern were selected to provide the optimum balance of high power and torque, low fuel consumption, stable combustion, low smoke emissions, and robust tolerance to injector plugging.
Technical Paper

Computational Aeroacoustics Investigation of Automobile Sunroof Buffeting

2007-05-15
2007-01-2403
A numerical investigation of automobile sunroof buffeting on a prototype sport utility vehicle (SUV) is presented, including experimental validation. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using the PowerFLOW code, a CFD/CAA software package from Exa Corporation based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution.
X