Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Improving Load Regeneration Capability of an Aircraft

2009-11-10
2009-01-3189
This paper presents new concepts for improving management of the electrical load power regeneration of an aircraft. A novel electrical system that allows for load regeneration back to the distribution bus is described. This approach offers the benefits of reduced weight, volume, and cost, as well as improved reliability. Also described is an electrical machine control mechanism that creates motor power to run the prime mover (i.e., the main engine to dissipate the regenerated power). Instead of main engine generation, this approach can be applied to an auxiliary power unit (APU) or power and thermal management system (PTMS). Background information regarding the regeneration concept is presented. The concept definition and the various modes of operation of the improved system are analyzed and described in detail. Results from the dynamic simulation of the system model are included.
Technical Paper

Cascade Distillation Subsystem Development: Progress Toward a Distillation Comparison Test

2009-07-12
2009-01-2401
Recovery of potable water from wastewater is essential to the success of long-duration human missions to the moon and Mars. Honeywell International and a team from the NASA Johnson Space Center (JSC) are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The wastewater processor, which is referred to as the cascade distillation subsystem (CDS), uses an efficient multistage thermodynamic process to produce purified water. A CDS unit employing a five-stage distiller engine was designed, built, and delivered to the NASA JSC Advanced Water Recovery Systems Development Facility for performance testing; an initial round of testing was completed in fiscal year 2008 (FY08). Based, in part, on FY08 testing, the system is now in development to support an Exploration Life Support Project distillation comparison test that is expected to begin in 2009.
Journal Article

Next Generation Power and Thermal Management System

2008-11-11
2008-01-2934
The power and thermal management system (PTMS) developed by Honeywell for aircraft is an integral approach combining the functions of the auxiliary power unit (APU), emergency power unit (EPU), environmental control system (ECS), and thermal management system (TMS). The next generation PTMS discussed in this paper incorporates the new more electric architecture (MEA) and energy efficient aircraft (EEA) initiatives. Advanced system architectures with increased functionality and further integration capabilities with other systems are included. Special emphasis is given to improvements resulting from interactions with the main engine, main electric power generation, and flight actuation. The major drivers for advancement are highlighted, as well as the potential use of new technologies for turbomachinery, heat exchangers, power electronics, and electric machines. More advanced control and protection algorithms are considered.
Technical Paper

A Selected Operational History of the Internal Thermal Control System (ITCS) for International Space Station (ISS)

2004-07-19
2004-01-2470
The Internal Thermal Control System (ITCS) has been developed jointly by Boeing Corporation, Huntsville, Alabama and Honeywell Engines & Systems, Torrance, California to meet the internal thermal control needs for the International Space Station (ISS). The ITCS provides heat removal for the critical life support systems and thermal conditioning for numerous experiment racks. The ITCS will be fitted on a number of modules on the ISS. The first US Element containing the ITCS, Node 1, was launched in December 1998. Since Node 1 does not contain a pump to circulate the fluid it was not filled with ITCS fluid until after the US Laboratory Module was installed. The second US Element module, US Laboratory Module, which contains the pumps and all the major ITCS control hardware, was launched in February 2001. The third US Element containing the ITCS, the US Airlock, was launched in July 2001.
Technical Paper

Selection of an Alternate Biocide for the ISS Internal Thermal Control System Coolant - Phase II

2004-07-19
2004-01-2472
The ISS (International Space Station) ITCS (Internal Thermal Control System) includes two internal coolant loops that utilize an aqueous based coolant for heat transfer. A silver salt biocide had previously been utilized as an additive in the coolant formulation to control the growth and proliferation of microorganisms within the coolant loops. Ground-based and in-flight testing demonstrated that the silver salt was rapidly depleted, and did not act as an effective long-term biocide. Efforts to select an optimal alternate biocide for the ITCS coolant application have been underway and are now in the final stages. An extensive evaluation of biocides was conducted to down-select to several candidates for test trials and was reported on previously.
Technical Paper

Selection of an Alternate Biocide for the International Space Station Internal Active Thermal Control System Coolant Loops

2003-07-07
2003-01-2568
The International Space Station (ISS) IATCS (Internal Active Thermal Control System) includes two internal coolant loops that use an aqueous based coolant for heat transfer. A silver salt biocide was used initially as an additive in the coolant formulation to control the growth and proliferation of microorganisms in the coolant loops. Ground-based and in-flight testing has demonstrated that the silver salt is rapidly depleted and not effective as a long-term biocide. Efforts are now underway to select an alternate biocide for the IATCS coolant loop with greatly improved performance. An extensive evaluation of biocides was conducted to select several candidates for test trials.
Technical Paper

Development of the Internal Thermal Control System (ITCS) for International Space Station (ISS)

2001-07-09
2001-01-2332
The International Space Station (ISS) internal thermal control system (ITCS) has been developed jointly by the Boeing Corporation, Huntsville, Alabama, and Honeywell Engines & Systems, Torrance, California, to meet ISS internal thermal control needs. The ITCS provides heat removal for the critical life support systems and thermal conditioning for numerous experiment racks. The ITCS will be fitted on a number of modules on the ISS. The first module, the US Laboratory Module, was launched in February 2001 and is now operational on the ISS. The dual loop system is comprised of a low-temperature loop (LTL) and a moderate-temperature loop (MTL). Each loop has a pump package assembly (PPA), a system flow control assembly (SFCA), a three-way mixing valve (TWMV), several rack flow control assemblies (RFCA), cold plates, pressure sensors, temperature sensors, a pump bypass assembly (PBA), and a heat exchanger.
X