Refine Your Search

Topic

Author

Search Results

Technical Paper

A Novel Vehicle-to-Vehicle Fast Charging Control System Utilizing Motor and Inverter in EV

2022-03-29
2022-01-0170
As electric vehicles become more widespread, such vehicles may be subject to “range anxiety” due to the risk of discharging during driving or the discharging when left unused for a long period. Accordingly, a vehicle equipped with a mobile charger that can provide a charge in an emergency. The vehicle with the mobile charger is usually composed of a large capacity battery, a power converter in a small truck. However, the large capacity battery and the power converter are disadvantageous in that they are large in size and expensive and should be produced as a special vehicle. In this paper, we propose a method to solve the problem using an internal EV system without requiring an additional power generation, battery and a charging-and-discharging device. The method is a novel Vehicle-to-Vehicle (V2V) fast charging control system utilizing motor and inverter in EV.
Technical Paper

Discovering Effective Factors for Big Data-Based Fuel Cell Durability

2022-03-29
2022-01-0684
As data emerges as the most valuable resource in the world, the evolution of the related data industry is progressing faster. In this study, we tried to discover effective factors for fuel cell durability by using big data analysis techniques with accumulated vehicle actual road data (de-identified Blue Link Data). Basic analysis is performed assuming factors that are expected to have a significant impact on the fuel cell durability performance, and durability factor modeling according to the clustering between driving patterns and durability performance is used to determine. Now can see the change in durability performance. By analyzing the correlation between each driving pattern and durability performance, it is possible to know the weight of the effective factor affecting the durability. If the effective factor with high weight is improved in the actual vehicle unit, the durability performance is expected to increase, and the effect will be verified through real road operation.
Technical Paper

Speed Limiter Using Disturbance Observer

2021-04-06
2021-01-0102
This paper suggests disturbance observer which improves performance of speed limit assist control. The nonlinear disturbance observer was designed so that disturbance caused by parameter and load uncertainties is able to be estimated exponentially. With the contribution of the observer, feed-forward and integral controllers can be omitted while improving steady-state error elimination and overshoot reduction. The acceleration observer is also designed to reduce the effect of wheel slip and changing slope. The performance of the controllers has been verified not only on flat roads, but also on wave road and rapidly changing ramps.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

Energy-Optimal Deceleration Planning System for Regenerative Braking of Electrified Vehicles with Connectivity and Automation

2020-04-14
2020-01-0582
This paper presents an energy-optimal deceleration planning system (EDPS) to maximize regenerative energy for electrified vehicles on deceleration events perceived by map and navigation information, machine vision and connected communication. The optimization range for EDPS is restricted within an upcoming deceleration event rather than the entire routes while in real time considering preceding vehicles. A practical force balance relationship based on an electrified powertrain is explicitly utilized for building a cost function of the associated optimal control problem. The optimal inputs are parameterized on each computation node from a set of available deceleration profiles resulting from a deceleration time model which are configured by real-world test drivings.
Technical Paper

Synergies of Cooled External EGR, Water Injection, Miller Valve Events and Cylinder Deactivation for the Improvement of Fuel Economy on a Turbocharged-GDI Engine; Part 2, Engine Testing

2019-04-02
2019-01-0242
As CO2 legislation tightens, the next generation of turbocharged gasoline engines must meet stricter emissions targets combined with increased fuel efficiency standards. Recent studies have shown that the following technologies offer significant improvements to the efficiency of turbocharged GDI engines: Miller Cycle via late intake valve closing (LIVC), low pressure loop cooled EGR (LPL EGR), port water injection (PWI), and cylinder deactivation (CDA). While these efficiency-improving technologies are individually well-understood, in this study we directly compare these technologies to each other on the same engine at a range of operating conditions and over a range of compression ratios (CR). The technologies tested are applied to a boosted and direct injected (DI) gasoline engine and evaluated both individually and combined.
Technical Paper

Synergies of Cooled External EGR, Water Injection, Miller Valve Events and Cylinder Deactivation for the Improvement of Fuel Economy on a Turbocharged-GDI Engine; Part 1, Engine Simulation

2019-04-02
2019-01-0245
As CO2 legislation tightens, the next generation of turbocharged gasoline engines must meet stricter emissions targets combined with increased fuel efficiency standards. Promising technologies under consideration are: Miller Cycle via late intake valve closing (LIVC), low pressure loop cooled exhaust gas recirculation (LPL EGR), port water injection (PWI), and cylinder deactivation (CDA). While these efficiency improving options are well-understood individually, in this study we directly compare them to each other on the same engine at a range of operating conditions and over a range of compression ratios (CR). For this purpose we undertake a comprehensive simulation of the above technology options using a GT-Power model of the engine with a kinetics based knock combustion sub-model to optimize the fuel efficiency, taking into account the total in-cylinder dilution effects, due to internal and external EGR, on the combustion.
Technical Paper

Development of the Wireless Power Transfer Technology for a Sliding Door

2019-04-02
2019-01-0485
The sliding door’s movement is 3-dimensional unlike the conventional door. So the electric power and signal are exchanged via the long ‘Power Cable’. It has a quite complex structure in order to be suitable to connect the vehicle’s body and the sliding door even during it’s moving. As the result, it is more expensive than conventional door’s one and the quality could not be guaranteed easily. In this paper, I have developed new technology which could transfer electric power by ‘wireless transfer’ in order to resolve the problem from using ‘Power cable’. I would propose the proper structure to transfer the electric power at any position of the sliding door without any physical connection. To transfer the electric power which drives the window regulator and the actuators in door, I have applied the ‘inductive coupling’ system.
Technical Paper

In-Gear Slip Control Strategy of Dry-Clutch Systems Using a Sliding Mode Control

2019-04-02
2019-01-1305
This paper proposes a clutch control strategy during in-gear driving situations for Dual Clutch Transmissions (DCTs). The clutch is intentionally controlled to make small amount of a slip to identify the torque transfer capacity. The control objective of this phase is to ensure the clutch slip fairly remaining the specified value. To achieve this, the micro-slip controller is designed based on sliding mode control theory. Experimental verifications performed on onboard control system of the DCT equipped vehicle demonstrate that the proposed controller good tracking performance of the desired slip speed.
Technical Paper

Development of Adaptive Powertrain Control Utilizing ADAS and GPS

2019-04-02
2019-01-0883
This paper introduces the advancement of Engine Idle Stop-and-Go (ISG, also known as Auto Engine Stop-Start) and Neutral Coasting Control (NCC) with utilizing Advanced Driver Assistance System (ADAS) and GPS. The ISG and the In-Neutral Coasting (also known as Sailing or Gliding) have been widely implemented in recent vehicles for improving their fuel economy. However, many drivers find them somewhat disturbing because they basically change behaviors of their cars from what they used to. This annoyance discourages usages of those functions and eventually undermines their benefit of fuel saving. In order to mitigate the problem, new ISG and NCC algorithms are proposed. As opposed to the conventional logics that rely only on driver’s pedal action, the new algorithms determine whether or not to enable those functions for the given driving condition, based on the traffic information obtained using ADAS sensors and the location data from GPS and navigation map.
Technical Paper

Optimal Control of Integrated Starter and Generator for Maximum Energy Recovery during Engine Stop Transition in Hybrid Electric Vehicles

2016-04-05
2016-01-1244
An integrated starter and generator (ISG) is a type of electric machine which is mechanically connected to an internal combustion engine (ICE). The ISG is intended to conduct important roles in the hybrid electric vehicle (HEV) such as engine start and stop. Since the HEV has frequent electric vehicle (EV)/HEV mode transition, rapid engine cranking and vibration-free engine stop controls are necessary. In the case of the engine stop, the ISG provides the negative torque output to the ICE which can rapidly escape from its resonance speed. However, the ISG torque is determined by engineering intuition, the amount of energy recovery is hardly considered. Dynamic programming (DP) is an effective solution to find optimal ISG control strategy to maximize energy recovery during engine stop transition. Even though DP is an offline algorithm, the result can be used as a reference to evaluate and improve an existing on-line algorithm.
Technical Paper

A Study of Fuel Economy Improvement on US Fuel Economy Test Cycle by Model Based Cooled HP EGR System and Robust Logic through S-FMEA

2015-04-14
2015-01-1637
This paper focuses on the vehicle test result of the US fuel economy test cycles such as FTP75, HWY and US06 with model based Cooled EGR system. Cooled EGR SW function was realized by Model Based Development (internal rapid prototyping) using iRPT tool. With EGR, mixing exhaust gas with clean air reduces the oxygen concentration in the cylinder charge, as a result, the combustion process is slowed, and the combustion temperature drops. This experiment confirmed that the spark timing was more advanced without knocking and manifold pressure was increased in all cases with EGR. A positive potential of fuel economy improvement on FTP mode, US06 mode have seen in this experiment but not for HWY where the engine load is quite low and the spark advance is already optimized. As a result, fuel economy was increased by maximum 3.3% on FTP, 2.7% on US06, decreased by 0.3% on HWY mode respectively with EGR.
Journal Article

Integrated Chassis Control for Improving On-Center Handling Behavior

2014-04-01
2014-01-0139
This paper proposes a new integrated chassis control (ICC) using a predictive model-based control (MPC) for optimal allocation of sub-chassis control systems where a predictive model has 6 Degree of Freedom (DoF) for rigid body dynamics. The 6 DoF predictive vehicle model consists of longitudinal, lateral, vertical, roll, pitch, and yaw motions while previous MPC research uses a 3 DoF maximally predictive model such as longitudinal, lateral and yaw motions. The sub-chassis control systems in this paper include four wheel individual braking torque control, four wheel individual driving torque control and four corner active suspension control. Intermediate control inputs for sub-chassis control systems are simplified as wheel slip ratio changes for driving and braking controls and vertical suspension force changes for an active suspension control.
Journal Article

Mode-Dynamic Task Allocation and Scheduling for an Engine Management Real-Time System Using a Multicore Microcontroller

2014-04-01
2014-01-0257
A variety of methodologies to use embedded multicore controllers efficiently has been discussed in the last years. Several assumptions are usually made in the automotive domain, such as static assignment of tasks to the cores. This paper shows an approach for efficient task allocation depending on different system modes. An engine management system (EMS) is used as application example, and the performance improvement compared to static allocation is assessed. The paper is structured as follows: First the control algorithms for the EMS will be classified according to operating modes. The classified algorithms will be allocated to the cores, depending on the operating mode. We identify mode transition points, allowing a reliable switch without neglecting timing requirements. As a next step, it will be shown that a load distribution by mode-dependent task allocation would be better balanced than a static task allocation.
Journal Article

A Study on How to Utilize Hilly Road Information in Equivalent Consumption Minimization Strategy of FCHEVs

2014-04-01
2014-01-1827
This paper presents an adaptation method of equivalent factor in equivalent consumption minimization strategy (ECMS) of fuel cell hybrid electric vehicle (FCHEV) using hilly road information. Instantaneous optimization approach such as ECMS is one of real-time controllers. Furthermore, it is widely accepted that ECMS achieves near-optimum results with the selection of the appropriate equivalent factor. However, a lack of hilly road information no longer guarantees near-optimum results as well as charge-sustaining of ECMS under hilly road conditions. In this paper, first, an optimal control problem is formulated to derive ECMS analytical solution based on simplified models. Then, we proposed updating method of equivalent factor based on sensitivity analysis. The proposed method tries to mimic the globally optimal equivalent factor trajectory extracted from dynamic programming solutions.
Technical Paper

Modeling and Validation of ABS and RSC Control Algorithms for a 6×4 Tractor and Trailer Models using SIL Simulation

2014-04-01
2014-01-0135
A Software-in-the-Loop (SIL) simulation is presented here wherein control algorithms for the Anti-lock Braking System (ABS) and Roll Stability Control (RSC) system were developed in Simulink. Vehicle dynamics models of a 6×4 cab-over tractor and two trailer combinations were developed in TruckSim and were used for control system design. Model validation was performed by doing various dynamic maneuvers like J-Turn, double lane change, decreasing radius curve, high dynamic steer input and constant radius test with increasing speed and comparing the vehicle responses obtained from TruckSim against field test data. A commercial ESC ECU contains two modules: Roll Stability Control (RSC) and Yaw Stability Control (YSC). In this research, only the RSC has been modeled. The ABS system was developed based on the results obtained from a HIL setup that was developed as a part of this research.
Technical Paper

Design for NVH Performance and Weight Reduction in Plastic Timing Chain Cover Application

2014-04-01
2014-01-1043
Light weighting is a critical objective in the automotive industry to improve fuel efficiency. But when redesigning parts for light weight, by changing from metal to plastic, the resulting design gives NVH issues due to differences in part mass and material stiffness. Many parts were not converted from metal to plastic because of NVH issues that could not be solved. Many engine parts such as cylinder head cover, air intake manifold, oil pan and etc. previously made of metal have since long been replaced with plastic. But timing chain cover has not been replaced because of the aforementioned issue. Sealing performance due to the dynamic characteristics of the application is another challenging factor. In this paper, the key aspects of the plastic timing chain cover as well as its advantage are presented.
Technical Paper

Development of a Lightweight CFRP Coil Spring

2014-04-01
2014-01-1057
Today, all manufacturers of vehicles are up for the challenge to abide in automobile emission control laws. Weight reduction is one of the best solutions to reduce both fuel consumption and emissions. The most effective method for the said idea is to have lightweight materials to some parts of vehicle using the FRP(Fiber Reinforced Plastics). In order to obtain good mechanical properties of FRP, continuous fiber should be used. But it is difficult to design and manufacture FRP parts using continuous fiber because of material properties and molding process. In this paper, it is used CF(carbon Fiber) and Epoxy to make a composite material. Properties of this CFRP can be predicted through analysis. Tests and simulations of specimen are performed as every step progresses for correlation. A spring can be designed to meet all requirements for specific performance. The CFRP spring is made by new devices and methods and can be applied to vehicle for practical use.
Technical Paper

Development of Nu 2.0L CVVL Engine

2014-04-01
2014-01-1635
Hyundai Motor Group launched a Continuously Variable Valve Lift (CVVL) engine in 2012. The engine is equipped with HMG's unique CVVL mechanism and is characterized by low fuel consumption, high performance and its responsiveness. The CVVL mechanism is based on a six-linkage mechanism and has advantages of compactness and durability. The engine is a 4 cylinder In-Line, 2.0L gasoline engine and is designed for a mid-sized passenger car. The engine increases fuel efficiency by 7.7% and the peak engine power by 4.2%. One of the most challenging issues in producing a CVVL engine is the valve lift deviations throughout the engine cylinders. The valve cap shim and set screw were designed to adjust the valve lift deviations. Cap shim thickness is chosen by measuring the valve top height, and shoe lift of the cam carrier assembly. The set screw is an auxiliary device to adjust the valve lift deviation.
Technical Paper

Development of Valvetrain System to Improve Knock Characteristics for Gasoline Engine Fuel Economy

2014-04-01
2014-01-1639
It is difficult to reach higher compression ratios of the gasoline engine even though higher compression ratios improve thermal efficiency. One of the barriers is large torque drop led by knocking. Extensive researches to suppress knocking of the gasoline engine have been conducted. It is focused on lowering the temperature of fuel mixture in combustion chamber at compression top dead center (TDC). This paper covers the new valvetrain system to decrease the temperature of exhaust valve bottom (combustion) side. Hollow head and stem sodium filled valve (HHSV) have shown more heat transfer from combustion chamber to valve seat insert and valve guide, and higher thermal conductivity valve seat insert (HVSI) and valve guide (HVG) help to decrease valve temperature lower by higher heat transfer.
X