Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Preliminary Study on the Evaporative Cooling System for FCEV

2024-04-09
2024-01-2406
The existing FCEV have been developed with only a few vehicle models. With the diversification of both passenger and commercial FCEV lineups, as well as the increasing demand for vehicle trailer towing, there is a growing need for high-capacity fuel cell stacks to be applied in vehicles. However, at the current level, there are limitations and issues that arise, such as insufficient power output and reduced driving speed. As a results, the importance of thermal energy management has been increasing along with the increase in required power. Traditional cooling performance enhancement methods have mainly focused on developing increased hardware specifications, but even this approach has reached its limitation due to package, cost and weight problem. Therefore, it is essential to develop a new cooling system to solve the increases in heat dissipation.
Technical Paper

Next Generation Seat Ventilation System for Genesis EV

2023-04-11
2023-01-0911
The shift towards electric vehicles is gaining pace to address carbon neutrality and environmental concerns. New technologies are being developed to cater to the unique features of EVs, such as the low indoor noise at low speeds, which require a low-noise ventilation system. A new dual-blower type system was developed to solve the problem of seat-bottom package caused by battery placement in the vehicle. This system uses two blowers, one for the cushion and one for the back, and reduces RPM to lower high-frequency noise. A new solution was introduced for temperature drop performance in the ventilation system. An integrated controller was also developed to control the seat warmer and ventilation system, with a smart control function added to respond to vehicle speed and ventilation time based on customer usage. As a result, this new ventilation system improves air volume, reduces noise, improves foot space, and reduces the number of parts compared to the previous system.
Technical Paper

Driver Mental Stress in Response to Thermal Stress Change during Highway Driving

2023-04-11
2023-01-0146
Monitoring driver thermal stress is an integral step for developing an automated climate control function. In this experimental study, various physiological measures for driver’s thermal stress were tracked while intentionally by altering thermal conditions of the seat with a seat air conditioning system (ACS) in summer and a seat heating system (HS) in winter. It was aimed to determine reliable physiological measures for identifying the changes in thermal status induced by the two seat climate control systems. In the first experiment, twenty experienced drivers drove a comfortable sedan for 60 minutes on a real highway while varying the intensity of the seat ACS every 10 minutes to incur ‘hot’ – ‘cool’ – ‘hot’ – ‘cool’ thermal stress. In the second experiment, a new group of eighteen drivers drove the same highway for 30 minutes while increasing the intensity of seat HS to incur ‘cold’ to ‘warm’ thermal stress.
Technical Paper

A Study on the Sound Transmission Loss of Split HVAC for Electric Vehicles

2022-06-15
2022-01-0981
Generally, the HVAC system of a vehicle is composed of Blower unit assembly and Heater unit assembly, and is located on the driver’s side of the dash panel. However, electric vehicles have far fewer parts than conventional internal combustion engine vehicles, so electric vehicles have large space in the engine room. This allows HVAC, which occupies large volume in the interior side, to be pushed in the direction of the engine room altogether, or by placing a part inside the engine room to make a slim cockpit and expand the interior space. However, this new structure, called the Split HVAC System, is mounted through the dash, allowing noise to pass through relatively easily. Since this adversely affects the NVH of an electric vehicle, it needs to be developed in terms of noise transmission. Therefore, in this paper, a study was conducted to predict the sound transmission loss of Split HVAC through an analytical method.
Technical Paper

A Study on the Optimum Reduction of Required Brake Fluid Level for Improvement of the High Speed Continuous Brake Distance

2019-09-15
2019-01-2121
The high speed continuous braking distance assessment is the worst condition for thermal fades. This study was conducted to investigate the relationship between fade characteristic and friction materials & brake fluid amount for improving braking distance. So, we used the dynamometer to measure the friction coefficient, braking distance and required brake fluid amount. Through the measurements, the research was carried out as follows. First of all, we studied the influence of friction coefficient about different shapes (chamfer shape, area of the friction material, number of slots) on the same friction material. Secondly, we knew the effects of braking distance by the shape of the friction material. Through these two studies, the shape of the friction material favorable to the fade characteristics was derived. Finally, we measured the amount of required brake fluid in caliper after 10 consecutive braking cycles through Dynamometer.
Technical Paper

Development of Surfactant-Free Anti-Fogging Coating for Automotive Headlamps

2019-03-25
2019-01-1439
Recently, the design of automotive headlamps has become diversified and complicated according to customer needs. Hence, structural complexity of the headlamps has also increased. Complex structure of the headlamps inevitably causes a disturbance in air circulation. For this reason, inadvertent micro-sized water droplets, called fogging, are condensed on the inner surface of headlamp lens due to temperature difference between the inner and outer lens surfaces. To circumvent fogging inside of the headlamp lens, an anti-fogging coating is indispensable. Conventionally, diverse surfactants have been adopted as substantial material for the anti-fogging coating. However, the usage of the surfactants causes undesirable side effect such as water mark arising from vapor condensation, which is an important issue that must be fully resolved. In this study, we developed an innovative anti-fogging coating material without using conventional surfactant.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

A Study of the Auxiliary Belt Drive System for Actual Fuel Saving

2017-03-28
2017-01-0898
The engine indicated torque is not delivered entirely to the wheels, because it is lowered by losses, such as the pumping, mechanical friction and front auxiliary power consumption. The front auxiliary belt drive system is a big power consumer-fueling and operating the various accessory devices, such as air conditioning compressor, electric alternator, and power steering pump. The standard fuel economy test does not consider the auxiliary driving torque when it is activated during the actual driving condition and it is considered a five-cycle correction factor only. Therefore, research on improving the front end auxiliary drive (FEAD) system is still relevant in the immediate future, particularly regarding the air conditioning compressor and the electric alternator. An exertion to minimize the auxiliary loss is much smaller than the sustained effort required to reduce engine friction loss.
Technical Paper

Development of Durability Improved Tire Repair Sealant and Intergrated Inflator

2016-04-05
2016-01-0508
This study provides a tire puncture sealant including NR latex and acrylic emersion, which has a reduced viscosity at -40°C, and is also excellent storage stability at -40°C to 70°C, initial sealing performance. Also, this study provides device for sealing inflatable objects. 'One- Piece Tire Repair Kit' can reduce weight and operation steps.
Technical Paper

Re-design of Power Sliding Door Pulley System

2015-04-14
2015-01-1312
The power sliding door system(PSD) is being equipped in the MPV(Multi-Purpose Vehicle/minivans) vehicle for convenience in the door operation. This study will focus on package space optimization for interior design and overall vehicle packaging for the vehicles equipped with PSD. To optimize the package, investigation for PSD's structure need to be done and the examples of other vehicle maker will be investigated and compared. The study that considers performance and package requirements resulted in a unique PSD design. And finally, this study will show the result vehicle in which the optimized mechanism is applied.
Technical Paper

Analysis of Microorganism Causing Odor in an Air-Conditioning System

2015-04-14
2015-01-0354
This study has been conducted to analyze microbial diversity and its community by using a method of NGS(Next generation sequencing) technique that is not rely on cultivation for microbial community in an core evaporator causing odor of car air conditioner. The NGS without any cultivation method of cultivation, has been developed recently and widely. This method is able to research a microorganism that has not been cultivated. Differently with others, it can get a result that is closer to fact, also can acquire more base sequence with larger volume in relatively shorter time. According to bacteria population analysis of 23 samples, It can be known limited number of bacteria can inhabit in Evaporator core, due to small exposure between bacteria and evaporate, as well as its environmental characteristics. With the population analysis, only certain group of it is forming biofilm in proportion.
Technical Paper

Vehicle Cabin Air Quality with Fractional Air Recirculation

2013-04-08
2013-01-1494
A fractional recirculation of cabin air was proposed and studied to improve cabin air quality by reducing cabin particle concentrations. Vehicle tests were run with differing number of passengers (1, 2, 3, and 4), four fan speed settings and at 20, 40, and 70 mph. A manual control was installed for the recirculation flap door so different ratios of fresh air to recirculated air could be used. Full recirculation is the most efficient setting in terms of thermal management and particle concentration reduction, but this causes elevated CO₂ levels in the cabin. The study demonstrated cabin CO₂ concentrations could be controlled below a target level of 2000 ppm at various driving conditions and fan speeds with more than 85% of recirculation. The proposed fractional air recirculation method is a simple yet innovative way of improving cabin air quality. Some energy saving is also expected, especially with the air conditioning system.
Technical Paper

A Comparative Study of Non-Asbestos Organics vs. Low Steel Lomets for Humidity Sensitivity

2012-09-17
2012-01-1788
Non-Asbestos Organic (NAO) disc pads and Low Steel Lomet disc pads were subjected to high and low humidity conditions to discover how humidity affects these two classes of formulations for physical properties, friction, wear and noise characteristics. The 2 classes of formulations show similarities and differences in response to increasing humidity. The humidity effect on deformation of the surface microstructure of the gray cast iron disc is also investigated. Humidity implications for pad quality control and brake testing are discussed.
Technical Paper

Experimental Study on the Air Quality of Vehicle’s Cabin by Evaluating CO2 Concentration and Fine Dust on the Actual Road

2009-04-20
2009-01-0536
For a complete automotive HVAC system, it is desirable to keep good air quality control for the interior vehicle cabin. This experimental study for evaluating the CO2 concentration levels in a vehicle cabin was done on the roads in South Korea. Increasing levels of CO2 can cause a passenger to become tired, sleepy and cause headaches or discomfort. The study results shows that CO2 and fine dust concentration is a result of the number of passengers,_driving condition and HVAC user settings. The result from this investigation can be used to establish a development guide for air quality in a vehicle cabin.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Technical Paper

Control of Automotive PEM Fuel Cell Systems

2007-08-05
2007-01-3491
In order to understand the automotive PEM fuel cell system, mathematical system modeling is conducted and the model is implemented and simulated by using the Matlab®/Simulink®. The components such as fuel cell stack, air supplier, and radiator are modeled individually and integrated into a system level. The PEM fuel cell system operation control includes thermal management, air supply control, hydrogen supply control, fuel cell stack protection control, and load following control. In the thermal management, the inlet and outlet temperature of coolant are controlled to operate the fuel cell stack in desired temperature range and to prevent flooding inside the fuel cell stack. In air supply control and hydrogen supply control, the flow rates of air and hydrogen are controlled not to starve the fuel cell stack according to the output current. A control structure for the system is developed and confirmed by using the developed simulation model.
X