Refine Your Search

Topic

Author

Search Results

Journal Article

The Thermodynamics of Exhaust Gas Condensation

2017-06-29
2017-01-9281
Water vapor is, aside from carbon dioxide, the major fossil fuel combustion by-product. Depending on its concentration in the exhaust gas mixture as well as on the exhaust gas pressure, its condensation temperature can be derived. For typical gasoline engine stoichiometric operating conditions, the water vapor dew point lies at about 53 °C. The exhaust gas mixture does however contain some pollutants coming from the fuel, engine oil, and charge air, which can react with the water vapor and affect the condensation process. For instance, sulfur trioxide present in the exhaust, reacts with water vapor forming sulfuric acid. This acid builds a binary system with water vapor, which presents a dew point often above 100 °C. Exhaust composition after leaving the combustion chamber strongly depends on fuel type, engine concept and operation point. Furthermore, the exhaust undergoes several chemical after treatments.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Technical Paper

Gasoline HCCI/CAI on a Four-Cylinder Test Bench and Vehicle Engine - Results and Conclusions for the Next Investigation Steps

2010-05-05
2010-01-1488
Internal combustion engines with lean homogeneous charge and auto-ignition combustion of gasoline fuels have the capability to significantly reduce fuel consumption and realize ultra-low engine-out NOx emissions. Group research of Volkswagen AG has therefore defined the Gasoline Compression Ignition combustion (GCI®) concept. A detailed investigation of this novel combustion process has been carried out on test bench engines and test vehicles by group research of Volkswagen AG and IAV GmbH Gifhorn. Experimental results confirm the theoretically expected potential for improved efficiency and emissions behavior. Volkswagen AG and IAV GmbH will utilize a highly flexible externally supercharged variable valve train (VVT) engine for future investigations to extend the understanding of gas exchange and EGR strategy as well as the boost demands of gasoline auto-ignition combustion processes.
Technical Paper

Comparison of Different EGR Solutions

2008-04-14
2008-01-0206
This paper compares 4 different EGR systems by means of simulation in GT-Power. The demands of optimum massive EGR and fresh air rates were based on experimental results. The experimental data were used to calibrate the model and ROHR, in particular. The main aim was to investigate the influence of pumping work on engine and vehicle fuel consumption (thus CO2 production) in different EGR layouts using optimum VG turbine control. These EGR systems differ in the source of pressure drop between the exhaust and intake pipes. Firstly, the engine settings were optimized under steady operation - BSFC was minimized while taking into account both the required EGR rate and fresh air mass flow. Secondly, transient simulations (NEDC cycle) were carried out - a full engine model was used to obtain detailed information on important parameters. The study shows the necessity to use natural pressure differences or renewable pressure losses if reasonable fuel consumption is to be achieved.
Technical Paper

Locally Resolved Measurement of Gas-Phase Temperature and EGR-Ratio in an HCCI-Engine and Their Influence on Combustion Timing

2007-04-16
2007-01-0182
Laser-based measurements of charge temperature and exhaust gas recirculation (EGR) ratio in an homogeneous charge compression ignition (HCCI) engine are demonstrated. For this purpose, the rotational coherent anti-Stokes Raman spectroscopy technique (CARS) was used. This technique allows temporally and locally resolved measurements in combustion environments through only two small line-of-sight optical accesses and the use of standard gasoline as a fuel. The investigated engine is a production-line four-cylinder direct-injection gasoline engine with the valve strategy modified to realize HCCI-operation. CARS-measurements were performed in motored and fired operation and the results are compared to polytropic calculations. Studies of engine speed, load, valve timing, and injection pressure were conducted showing the strong influence of charge temperature on the combustion timing.
Technical Paper

Engine-Independent Exhaust Gas Aftertreatment Using a Burner Heated Catalyst

2006-10-16
2006-01-3401
Meeting current exhaust emission standards requires rapid catalyst light-off. Closed-coupled catalysts are commonly used to reduce light-off time by minimizing exhaust heat loss between the engine and catalyst. However, this exhaust gas system design leads to a coupling of catalyst heating and engine operation. An engine-independent exhaust gas aftertreatment can be realized by combining a burner heated catalyst system (BHC) with an underfloor catalyst located far away from the engine. This paper describes some basic characteristics of such a BHC system and the results of fitting this system into a Volkswagen Touareg where a single catalyst was located about 1.8 m downstream of the engine. Nevertheless, it was possible to reach about 50% of the current European emission standard EU 4 without additional fuel consumption caused by the BHC system.
Technical Paper

NO Laser-Induced Fluorescence Imaging in the Combustion Chamber of a Spray-Guided Direct-Injection Gasoline Engine

2004-06-08
2004-01-1918
In direct-injection gasoline (GDI) engines with charge stratification, minimizing engine-out nitrogen oxide (NOx) emission is crucial since exhaust-gas aftertreatment tolerates only limited amounts of NOx. Reduced NOx production directly lowers the frequency of energy-inefficient catalyst regeneration cycles. In this paper we investigate NO formation in a realistic GDI engine. Quantitative in-cylinder measurements of NO concentrations are carried out via laser-induced fluorescence imaging with excitation of NO (A-X(0,2) band at 248 nm), and subsequent fluorescence detection at 220-240 nm. Engine modifications were kept to a minimum in order to provide results that are representative of practical operating conditions. Optical access via a sapphire ring enabled identical engine geometry as a production line engine. The engine is operated with commercial gasoline (“Super-Plus”, RON 98).
Technical Paper

Advanced Emission Control Technologies for PM Reduction in Heavy-Duty Applications

2003-05-19
2003-01-1862
1 In this paper results obtained with different particulate matter (PM) reduction technologies are presented. Diesel oxidation catalysts (DOC) are well known as a reliable PM reduction technology which can efficiently remove the soluble organic fraction (SOF) but which has no effect on the solid particles in PM. A drawback is that in combination with high sulfur fuel, oxidation of SO2 to SO3 by the DOC can occur, resulting in an increase of PM emissions. An alternative technology that is proven to significantly reduce soot emissions comprises diesel particulate wall-flow filters. High filtration efficiencies of up to 90% and beyond are feasible. The main obstacle is the combustion of the trapped soot. As shown in this paper, the application of a catalyst coating to the filter aids the filter regeneration by lowering the balance-point temperature. The main disadvantages of wall-flow filters are an increase in back-pressure and possible plugging caused by oil-ash accumulations.
Technical Paper

A Study of the Thermochemical Conditions in the Exhaust Manifold Using Secondary Air in a 2.0 L Engine

2002-05-06
2002-01-1676
The California LEV1 II program will be introduced in the year 2003 and requires a further reduction of the exhaust emissions of passenger cars. The cold start emissions represent the main part of the total emissions of the FTP2-Cycle. Cold start emissions can be efficiently reduced by injecting secondary air (SA) in the exhaust port making compliance with the most stringent standards possible. The thermochemical conditions (mixing rate and temperature of secondary air and exhaust gas, exhaust gas composition, etc) prevailing in the exhaust system are described in this paper. This provides knowledge of the conditions for auto ignition of the mixture within the exhaust manifold. The thus established exothermal reaction (exhaust gas post-combustion) results in a shorter time to light-off temperature of the catalyst. The mechanisms of this combustion are studied at different engine idle conditions.
Technical Paper

Exhaust Gas Aftertreatment of Volkswagen FSI Fuel Stratified Injection Engines

2002-03-04
2002-01-0346
For substantial reduction of fuel consumption of their vehicle fleet, Volkswagen AG has decided to develop spark-ignition engines with direct fuel injection. To launch this new engine concept with stratified lean operation mode while at the same time meeting the stringent EU IV emission standards, it was necessary to develop a suitable exhaust gas aftertreatment system. This was achieved as part of an intensive co-operation between Volkswagen AG and OMG, formerly dmc2 Degussa Metals Catalysts Cerdec AG. The paper describes the demands for exhaust gas aftertreatment due to lean burn operation. In addition the main development steps of the exhaust gas aftertreatment system for Volkswagen FSI engines and catalyst durability over vehicle lifetime are discussed. Focus is laid on the catalyst system design and coating variations. Volkswagen developed a new closed-loop emission control management system which uses NOx-sensor signals for the first time worldwide.
Technical Paper

Research Results and Progress in LeaNOx II -A Co-operation for Lean NOx Abatement

2000-10-16
2000-01-2909
In a consortium of European industrial partners and research institutes, a combination of industrial development and scientific research was organised. The objective was to improve the catalytic NOx conversion for lean burn cars and heavy-duty trucks, taking into account boundary conditions for the fuel consumption. The project lasted for three years. During this period parallel research was conducted in research areas ranging from basic research based on a theoretical approach to full scale emission system development. NOx storage catalysts became a central part of the project. Catalysts were evaluated with respect to resistance towards sulphur poisoning. It was concluded that very low sulphur fuel is a necessity for efficient use of NOx trap technology. Additionally, attempts were made to develop methods for reactivating poisoned catalysts. Methods for short distance mixing were developed for the addition of reducing agent.
Technical Paper

Durability of Ultra Thin Wall Catalyst Solutions at Similar Restriction and Precious Metal Loading

2000-10-16
2000-01-2881
FTP emissions from a 2.2L four cylinder vehicle are measured from six different converters. These converters have been designed to have both similar flow restriction and to have similar platinum group metals. The durability of these six converters is evaluated after dynamometer aging of both 125 and 250 hours of RATsm aging. These catalytic converters use various combinations of 400/3.5 (400 cells/in2/3.5mil wall), 400/4.5, 400/6.5, 600/3.5, 600/4.5, and 900/2.5 ceramic substrates in order to meet a restriction target and to maximize converter geometric surface area. Total catalyst volume of the converters varies from 1.9 to 0.82 liters. Catalyst frontal area varies from 68 cm2 to 88 cm2. Five of the six converters use two catalyst bricks. The front catalyst brick uses either a three-way Pd washcoat technology containing ceria or a non-ceria Pd washcoat technology. To minimize dependence on palladium the rear brick uses a Pt/Rh washcoat at a loading of 0.06 Toz and a ratio of 5/0/1.
Technical Paper

UltraThin Wall Catalyst Solutions at Similar Restriction and Precious Metal Loading

2000-06-19
2000-01-1844
FTP and ECE + EUDC emissions are measured from six converters having similar restriction and platinum group metals on two 1999 prototype engines/calibrations. A 2.2L four cylinder prototype vehicle is used to measure FTP emissions and an auto-driver dynamometer with a prototype 2.4L four cylinder engine is used to determine the ECE + EUDC emissions. The catalytic converters use various combinations of 400/3.5 (400cpsi/3.5mil wall), 400/4.5, 400/6.5, 600/3.5, 600/4.5, and 900/2.5 ceramic substrates in order to meet a restriction target and to maximize converter geometric surface area. Total catalyst volume of the converters varies from 1.9 to 0.82 liters. Catalyst frontal area varies from 68 cm2 to 88 cm2. Five of the six converters use two catalyst bricks. The front catalyst brick uses either a three-way Pd washcoat technology containing ceria or a non-ceria Pd washcoat technology. Pd loadings are 0.1 troy oz. of Pd.
Technical Paper

Experimental Approach to Optimize Catalyst Flow Uniformity

2000-03-06
2000-01-0865
A uniform flow distribution at converter inlet is one of the fundamental requirements to meet high catalytic efficiency. Commonly used tools for optimization of the inlet flow distribution are flow measurements as well as CFD analysis. This paper puts emphasis on the experimental procedures and results. The interaction of flow measurements and CFD is outlined. The exhaust gas flow is transient, compressible and hot, making in-situ flow measurements very complex. On the other hand, to utilize the advantages of flow testing at steady-state and cold conditions the significance of these results has to be verified first. CFD analysis under different boundary conditions prove that - in a first approach - the flow situation can be regarded as a sequence of successive, steady-state situations. Using the Reynolds analogy a formula for the steady-state, cold test mass flow is derived, taking into account the cylinder displacement and the rated speed.
Technical Paper

Palladium and Platinum/Rhodium Dual-Catalyst Emission Solutions for Close-Coupled or Underfloor Applications

2000-03-06
2000-01-0860
Dual-brick catalyst systems containing Pd-only catalysts followed by Pt/Rh three-way catalysts (TWCs) are effective emission solutions for both close-coupled and underfloor LEV/ULEV applications due to optimal hydrocarbon light-off, NOx control, and balance of precious metal (PGM) usage. Dual-brick [Pd +Pt/Rh] systems on 3.8L V-6 LEV-calibrated vehicles were characterized as a function of PGM loading, catalyst technology, converter volumes, and substrate cell density. While hydrocarbon emissions improve with increasing Pd loading, decreasing the front catalyst volume at constant Pd content (resulting in higher Pd density) improved light-off emissions. Use of 600cpsi substrates improved underfloor NMHC emissions on a 3.8L vehicle by ∼ 6-10mg/mi compared to 400cpsi catalysts, and thus allowing reduction of catalyst volume while achieving ULEV emission levels without air addition.
Technical Paper

Improved SCR Systems for Heavy Duty Applications

2000-03-06
2000-01-0189
This paper describes the function and application of the preoxidation, hydrolysis and SCR catalysts individually and as a combined system for urea SCR both in model gas and engine bench tests. Using the basic system and a non-optimized urea injection strategy 45% NOx conversion was achieved in the ESC engine test. Adding a preoxidation catalyst significantly improved the NOx conversion in the low temperature region of the engine mapping. NOx conversions over 75% can be achieved in the ESC test using this improved system. With a 50% reduced SCR catalyst volume still a NOx conversion of over 65% could be achieved. Tests after 200 hours engine aging show that the activity of the system is stable.
Technical Paper

The Impact of Catalytic Aftertreatment on Particulate Matter Emissions from Small Motorcycles

1999-09-28
1999-01-3299
This paper presents the results of an exploratory study examining the production of particulate matter (PM) by 2-wheel vehicles and the impact of catalytic aftertreatment on these emissions. Information is presented demonstrating the efficacy of catalytic aftertreatment for significantly reducing not only hydrocarbons (HC) and carbon monoxide (CO), but also PM emissions from motorcycles equipped with small 2-stroke engines. The generation of PM by 5 test vehicles during realistic driving conditions is discussed and the impact of catalyst performance characteristics on the reduction of these releases is examined. Vehicle based test data, obtained with a mini-dilution tunnel, clearly demonstrates the benefits to the environment achievable through the use of catalytic aftertreatment.
Technical Paper

Durability Aspects of NOx Storage Catalysts for Direct Injection Gasoline Vehicles

1999-03-01
1999-01-1285
The introduction of gasoline direct injection technology into the European market will depend mainly on the availability of an effective and durable aftertreatment system, in order to reach future stringent European emission standards. NOx storage technology provides a reasonable chance of fulfilling future emission goals, but durability problems such as thermal degradation and sulfur poisoning have yet to be overcome. The present paper is dedicated to these problems, and demonstrates the progress achieved so far. The influence of different aging modes and aging severity on the NOx conversion efficiency of an advanced generation of NOx storage catalysts, is described in detail. It was found that the severity of aging at comparable catalyst bed temperatures, increases in the following order: hydrothermal aging in N2/H2O < engine aging w/o fuel cut at λ-1 < furnace aging in air < engine aging with fuel cut at λ-1.
Technical Paper

Hydrocarbon DeNOx Catalysis - System Development for Diesel Passenger Cars and Trucks

1999-03-01
1999-01-0109
1 In recent years Diesel DeNOx catalysts using additional hydrocarbons as reducing agents have been the focus of exhaust aftertreatment. The NOx reduction potential was often limited to 20 - 30 % in the European MVEG-A or the US FTP cycle by just adding a DeNOx catalyst on a vehicle. This result is explained by the fact that the catalyst was treated as a separate item and that the emission reduction strategy was not developed in a system approach. This paper summarizes results regarding the potential of state of the art Diesel DeNOx catalysts fitted to passenger cars and trucks when the exhaust gas system is optimized as a whole. The easiest way for a system approach is the combination of DeNOx catalysts with different working temperatures for NOx reduction. This has been demonstrated by the usage of several base metal catalysts for heavy duty applications. For passenger cars Platinum containing catalysts are strongly favored.
Technical Paper

The Impact of High Cell Density Ceramic Substrates and Washcoat Properties on the Catalytic Activity of Three Way Catalysts

1999-03-01
1999-01-0272
The present paper describes the results of a joint development program focussing on a system approach to meet the EURO IV emission standards for an upper class passenger car equipped with a newly developed high displacement gasoline engine. Based on the well known catalyst systems of recent V6- and V8-engines for the EURO III emission standards with a combination of close coupled catalysts and underfloor catalysts, the specific boundary conditions of an engine with an even larger engine displacement had to be considered. These boundary conditions consist of the space requirements in the engine compartment, the power/torque requirements and the cost requirements for the complete aftertreatment system. Theoretical studies and computer modeling showed essential improvements in catalyst performance by introducing thin wall substrates with low thermal inertia as well as high cell densities with increased geometric surface area.
X