Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities

2010-10-25
2010-01-2106
Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models that will be used to optimize future engine designs. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but because of the uniqueness of each facility, there are uncertainties about their operation. For this paper, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP.
Journal Article

Study of Air Entrainment of Multi-hole Diesel Injection by Particle Image Velocimetry - Effect of Neighboring Jets Interaction and Transient Behavior After End of Injection.

2010-04-12
2010-01-0342
The air entrainment of multi-hole diesel injection is investigated by high speed Particle Image Velocimetry (PIV) using a multi-hole common rail injector with an injection pressure of 100 MPa. The sprays are observed in a high pressure, high temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a diesel engine during injection. Typical ambient temperature of 800K and ambient density of 25 kg/m3 are chosen. The air entrainment is studied with the PIV technique, giving access to the velocity fields in the surrounding air and/or in the interior of two neighboring jets. High acquisition rate of 5000 Hz, corresponding to 200 μs between two consecutive image pairs is obtained by a high-speed camera coupled with a high-speed Nd:YLF laser. The effect of neighboring jets interaction is studied by comparing four injectors with different numbers of holes (4, 6, 8 and 12) with similar static mass flow rate per hole.
X